Update app.py
Browse files
app.py
CHANGED
@@ -1,77 +1,165 @@
|
|
|
|
1 |
import torch
|
2 |
-
import
|
3 |
-
import
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
st.session_state.waveforms.append(waveform)
|
41 |
-
detected_language = detect_language(waveform)
|
42 |
-
st.session_state.detected_languages.append(detected_language)
|
43 |
-
|
44 |
-
# Display uploaded files and options
|
45 |
-
if 'audio_files' in st.session_state and st.session_state.audio_files:
|
46 |
-
for i, uploaded_file in enumerate(st.session_state.audio_files):
|
47 |
-
st.write(f"**File name**: {uploaded_file.name}")
|
48 |
-
st.audio(uploaded_file, format=uploaded_file.type)
|
49 |
-
st.write(f"**Detected Language**: {st.session_state.detected_languages[i]}")
|
50 |
-
|
51 |
-
col1, col2 = st.columns(2)
|
52 |
-
|
53 |
-
with col1:
|
54 |
-
if st.button(f"Transcribe {uploaded_file.name}"):
|
55 |
-
with st.spinner("Transcribing..."):
|
56 |
-
transcription = process_long_audio(st.session_state.waveforms[i], SAMPLING_RATE)
|
57 |
-
st.session_state.transcriptions[i] = transcription
|
58 |
-
|
59 |
-
if st.session_state.transcriptions.get(i):
|
60 |
-
st.write("**Transcription**:")
|
61 |
-
st.text_area("", st.session_state.transcriptions[i], height=200, key=f"transcription_{i}")
|
62 |
-
st.markdown(f'<div style="text-align: right;"><a href="data:text/plain;charset=UTF-8,{st.session_state.transcriptions[i]}" download="transcription_{uploaded_file.name}.txt">Download Transcription</a></div>', unsafe_allow_html=True)
|
63 |
-
|
64 |
-
with col2:
|
65 |
-
if st.button(f"Translate {uploaded_file.name}"):
|
66 |
-
with st.spinner("Translating..."):
|
67 |
-
with open('languages.pkl', 'rb') as f:
|
68 |
-
lang_dict = pickle.load(f)
|
69 |
-
detected_language_name = lang_dict[st.session_state.detected_languages[i]]
|
70 |
-
|
71 |
-
translation = process_long_audio(st.session_state.waveforms[i], SAMPLING_RATE, task="translate",
|
72 |
-
language=detected_language_name)
|
73 |
-
st.session_state.translations[i] = translation
|
74 |
-
if st.session_state.translations.get(i):
|
75 |
-
st.write("**Translation**:")
|
76 |
-
st.text_area("", st.session_state.translations[i], height=200, key=f"translation_{i}")
|
77 |
-
st.markdown(f'<div style="text-align: right;"><a href="data:text/plain;charset=UTF-8,{st.session_state.translations[i]}" download="translation_{uploaded_file.name}.txt">Download Translation</a></div>', unsafe_allow_html=True)
|
|
|
1 |
+
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
import logging
|
5 |
+
import traceback
|
6 |
+
import sys
|
7 |
+
from audio_processing import AudioProcessor
|
8 |
|
9 |
+
logging.basicConfig(
|
10 |
+
level=logging.INFO,
|
11 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
12 |
+
handlers=[logging.StreamHandler(sys.stdout)]
|
13 |
+
)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
|
16 |
+
def load_qa_model():
|
17 |
+
"""Load question-answering model"""
|
18 |
+
try:
|
19 |
+
qa_pipeline = pipeline(
|
20 |
+
"text-generation",
|
21 |
+
model="meta-llama/Meta-Llama-3-8B-Instruct",
|
22 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
23 |
+
device_map="auto",
|
24 |
+
)
|
25 |
+
return qa_pipeline
|
26 |
+
except Exception as e:
|
27 |
+
logger.error(f"Failed to load Q&A model: {str(e)}")
|
28 |
+
return None
|
29 |
|
30 |
+
def load_summarization_model():
|
31 |
+
"""Load summarization model"""
|
32 |
+
try:
|
33 |
+
summarizer = pipeline(
|
34 |
+
"summarization",
|
35 |
+
model="sshleifer/distilbart-cnn-12-6",
|
36 |
+
device=0 if torch.cuda.is_available() else -1
|
37 |
+
)
|
38 |
+
return summarizer
|
39 |
+
except Exception as e:
|
40 |
+
logger.error(f"Failed to load summarization model: {str(e)}")
|
41 |
+
return None
|
42 |
|
43 |
+
def process_audio(audio_file, translate=False):
|
44 |
+
"""Process audio file"""
|
45 |
+
try:
|
46 |
+
processor = AudioProcessor()
|
47 |
+
language_segments, final_segments = processor.process_audio(audio_file, translate)
|
48 |
+
|
49 |
+
# Format output
|
50 |
+
transcription = ""
|
51 |
+
full_text = ""
|
52 |
+
|
53 |
+
# Add language detection information
|
54 |
+
for segment in language_segments:
|
55 |
+
transcription += f"Language: {segment['language']}\n"
|
56 |
+
transcription += f"Time: {segment['start']:.2f}s - {segment['end']:.2f}s\n\n"
|
57 |
+
|
58 |
+
# Add transcription/translation information
|
59 |
+
transcription += "Transcription with language detection:\n\n"
|
60 |
+
for segment in final_segments:
|
61 |
+
transcription += f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}):\n"
|
62 |
+
transcription += f"Original: {segment['text']}\n"
|
63 |
+
if translate and 'translated' in segment:
|
64 |
+
transcription += f"Translated: {segment['translated']}\n"
|
65 |
+
full_text += segment['translated'] + " "
|
66 |
+
else:
|
67 |
+
full_text += segment['text'] + " "
|
68 |
+
transcription += "\n"
|
69 |
+
|
70 |
+
return transcription, full_text
|
71 |
+
|
72 |
+
except Exception as e:
|
73 |
+
logger.error(f"Audio processing failed: {str(e)}")
|
74 |
+
raise gr.Error(f"Processing failed: {str(e)}")
|
75 |
|
76 |
+
def summarize_text(text):
|
77 |
+
"""Summarize text"""
|
78 |
+
try:
|
79 |
+
summarizer = load_summarization_model()
|
80 |
+
if summarizer is None:
|
81 |
+
return "Summarization model could not be loaded."
|
82 |
+
|
83 |
+
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
84 |
+
return summary
|
85 |
+
except Exception as e:
|
86 |
+
logger.error(f"Summarization failed: {str(e)}")
|
87 |
+
return "Error occurred during summarization."
|
88 |
|
89 |
+
def answer_question(context, question):
|
90 |
+
"""Answer questions about the text"""
|
91 |
+
try:
|
92 |
+
qa_pipeline = load_qa_model()
|
93 |
+
if qa_pipeline is None:
|
94 |
+
return "Q&A model could not be loaded."
|
95 |
+
|
96 |
+
messages = [
|
97 |
+
{"role": "system", "content": "You are a helpful assistant who can answer questions based on the given context."},
|
98 |
+
{"role": "user", "content": f"Context: {context}\n\nQuestion: {question}"}
|
99 |
+
]
|
100 |
+
|
101 |
+
response = qa_pipeline(messages, max_new_tokens=256)[0]['generated_text']
|
102 |
+
return response
|
103 |
+
except Exception as e:
|
104 |
+
logger.error(f"Q&A failed: {str(e)}")
|
105 |
+
return f"Error occurred during Q&A process: {str(e)}"
|
106 |
|
107 |
+
# Create Gradio interface
|
108 |
+
with gr.Blocks() as iface:
|
109 |
+
gr.Markdown("# Multilingual Speech Processing with MMS")
|
110 |
+
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
audio_input = gr.Audio(type="filepath")
|
114 |
+
translate_checkbox = gr.Checkbox(label="Enable Translation")
|
115 |
+
process_button = gr.Button("Process Audio")
|
116 |
+
|
117 |
+
with gr.Column():
|
118 |
+
transcription_output = gr.Textbox(label="Transcription/Translation", lines=10)
|
119 |
+
full_text_output = gr.Textbox(label="Full Text", lines=5)
|
120 |
+
|
121 |
+
with gr.Row():
|
122 |
+
with gr.Column():
|
123 |
+
summarize_button = gr.Button("Summarize")
|
124 |
+
summary_output = gr.Textbox(label="Summary", lines=3)
|
125 |
+
|
126 |
+
with gr.Column():
|
127 |
+
question_input = gr.Textbox(label="Ask a question about the transcription")
|
128 |
+
answer_button = gr.Button("Get Answer")
|
129 |
+
answer_output = gr.Textbox(label="Answer", lines=3)
|
130 |
+
|
131 |
+
# Set up event handlers
|
132 |
+
process_button.click(
|
133 |
+
process_audio,
|
134 |
+
inputs=[audio_input, translate_checkbox],
|
135 |
+
outputs=[transcription_output, full_text_output]
|
136 |
+
)
|
137 |
+
|
138 |
+
summarize_button.click(
|
139 |
+
summarize_text,
|
140 |
+
inputs=[full_text_output],
|
141 |
+
outputs=[summary_output]
|
142 |
+
)
|
143 |
+
|
144 |
+
answer_button.click(
|
145 |
+
answer_question,
|
146 |
+
inputs=[full_text_output, question_input],
|
147 |
+
outputs=[answer_output]
|
148 |
+
)
|
149 |
+
|
150 |
+
# Add system information
|
151 |
+
gr.Markdown(f"""
|
152 |
+
## System Information
|
153 |
+
- Device: {"CUDA" if torch.cuda.is_available() else "CPU"}
|
154 |
+
- CUDA Available: {"Yes" if torch.cuda.is_available() else "No"}
|
155 |
+
|
156 |
+
## Features
|
157 |
+
- Automatic language detection
|
158 |
+
- High-quality transcription using MMS
|
159 |
+
- Optional translation to English
|
160 |
+
- Text summarization
|
161 |
+
- Question answering
|
162 |
+
""")
|
163 |
|
164 |
+
if __name__ == "__main__":
|
165 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|