Generate french texts for now
Browse filesFirst transcription commit
To Do:
1. Predict language from files.
2. Add audio player with temporally fused text.
app.py
CHANGED
|
@@ -1,11 +1,25 @@
|
|
| 1 |
-
import
|
| 2 |
import streamlit as st
|
|
|
|
| 3 |
|
| 4 |
from io import BytesIO
|
| 5 |
-
from transformers import AutoProcessor, SeamlessM4TModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Title of the app
|
| 11 |
st.title("Audio Player with Live Transcription")
|
|
@@ -30,12 +44,12 @@ submit_button = st.sidebar.button("Submit")
|
|
| 30 |
# return f"Could not request results; {e}"
|
| 31 |
|
| 32 |
|
| 33 |
-
if submit_button and uploaded_files:
|
| 34 |
st.write("Files uploaded successfully!")
|
| 35 |
|
| 36 |
for uploaded_file in uploaded_files:
|
| 37 |
# Display file name and audio player
|
| 38 |
-
|
| 39 |
st.write(f"**File name**: {uploaded_file.name}")
|
| 40 |
st.audio(uploaded_file, format=uploaded_file.type)
|
| 41 |
|
|
@@ -44,8 +58,24 @@ if submit_button and uploaded_files:
|
|
| 44 |
|
| 45 |
# Read the uploaded file data
|
| 46 |
waveform, sampling_rate = ta.load(uploaded_file.getvalue())
|
|
|
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
# Run transcription function and display
|
| 49 |
# import pdb;pdb.set_trace()
|
| 50 |
# st.write(audio_data.getvalue())
|
| 51 |
-
|
|
|
|
| 1 |
+
import torch
|
| 2 |
import streamlit as st
|
| 3 |
+
import torchaudio as ta
|
| 4 |
|
| 5 |
from io import BytesIO
|
| 6 |
+
from transformers import AutoProcessor, SeamlessM4TModel, WhisperProcessor, WhisperForConditionalGeneration
|
| 7 |
+
|
| 8 |
+
if torch.cuda.is_available():
|
| 9 |
+
device = "cuda:0"
|
| 10 |
+
torch_dtype = torch.float16
|
| 11 |
+
else:
|
| 12 |
+
device = "cpu"
|
| 13 |
+
torch_dtype = torch.float32
|
| 14 |
|
| 15 |
+
SAMPLING_RATE=16000
|
| 16 |
+
task = "transcribe"
|
| 17 |
+
|
| 18 |
+
print(f"{device} Active!")
|
| 19 |
+
|
| 20 |
+
# load Whisper model and processor
|
| 21 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
| 22 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
| 23 |
|
| 24 |
# Title of the app
|
| 25 |
st.title("Audio Player with Live Transcription")
|
|
|
|
| 44 |
# return f"Could not request results; {e}"
|
| 45 |
|
| 46 |
|
| 47 |
+
if submit_button and uploaded_files is not None:
|
| 48 |
st.write("Files uploaded successfully!")
|
| 49 |
|
| 50 |
for uploaded_file in uploaded_files:
|
| 51 |
# Display file name and audio player
|
| 52 |
+
|
| 53 |
st.write(f"**File name**: {uploaded_file.name}")
|
| 54 |
st.audio(uploaded_file, format=uploaded_file.type)
|
| 55 |
|
|
|
|
| 58 |
|
| 59 |
# Read the uploaded file data
|
| 60 |
waveform, sampling_rate = ta.load(uploaded_file.getvalue())
|
| 61 |
+
resampled_inp = ta.functional.resample(waveform, orig_freq=sampling_rate, new_freq=SAMPLING_RATE)
|
| 62 |
|
| 63 |
+
input_features = processor(resampled_inp[0], sampling_rate=16000, return_tensors='pt').input_features
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
## Here Generate specific language!!!
|
| 68 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate")
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
if task == "translate":
|
| 72 |
+
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
| 73 |
+
else:
|
| 74 |
+
predicted_ids = model.generate(input_features)
|
| 75 |
+
# decode token ids to text
|
| 76 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 77 |
+
st.write(transcription)
|
| 78 |
+
# print(waveform, sampling_rate)
|
| 79 |
# Run transcription function and display
|
| 80 |
# import pdb;pdb.set_trace()
|
| 81 |
# st.write(audio_data.getvalue())
|
|
|