Changed App UI, added transcription and translation buttons
Browse files
app.py
CHANGED
@@ -53,42 +53,91 @@ def detect_language(audio_file):
|
|
53 |
print(f"Detected language: {max(probs[0], key=probs[0].get)}")
|
54 |
return max(probs[0], key=probs[0].get)
|
55 |
|
56 |
-
if submit_button and uploaded_files is not None:
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
|
72 |
-
|
73 |
|
74 |
-
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
print(f"Detected language: {max(probs[0], key=probs[0].get)}")
|
54 |
return max(probs[0], key=probs[0].get)
|
55 |
|
56 |
+
# if submit_button and uploaded_files is not None:
|
57 |
+
# st.write("Files uploaded successfully!")
|
58 |
|
59 |
+
# for uploaded_file in uploaded_files:
|
60 |
+
# # Display file name and audio player
|
61 |
|
62 |
+
# st.write(f"**File name**: {uploaded_file.name}")
|
63 |
+
# st.audio(uploaded_file, format=uploaded_file.type)
|
64 |
|
65 |
+
# # Transcription section
|
66 |
+
# st.write("**Transcription**:")
|
67 |
|
68 |
+
# # Read the uploaded file data
|
69 |
+
# waveform, sampling_rate = ta.load(uploaded_file.getvalue())
|
70 |
+
# resampled_inp = ta.functional.resample(waveform, orig_freq=sampling_rate, new_freq=SAMPLING_RATE)
|
71 |
|
72 |
+
# input_features = processor(resampled_inp[0], sampling_rate=16000, return_tensors='pt').input_features
|
73 |
|
74 |
+
# if task == "translate":
|
75 |
|
76 |
+
# # Detect Language
|
77 |
+
# lang = detect_language(input_features)
|
78 |
+
# with open('languages.pkl', 'rb') as f:
|
79 |
+
# lang_dict = pickle.load(f)
|
80 |
+
# detected_language = lang_dict[lang]
|
81 |
+
|
82 |
+
# # Set decoder & Predict translation
|
83 |
+
# forced_decoder_ids = processor.get_decoder_prompt_ids(language=detected_language, task="translate")
|
84 |
+
# predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
85 |
+
# else:
|
86 |
+
# predicted_ids = model.generate(input_features)
|
87 |
+
# # decode token ids to text
|
88 |
+
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
89 |
+
# for i in range(len(transcription)):
|
90 |
+
# st.write(transcription[i])
|
91 |
+
# # print(waveform, sampling_rate)
|
92 |
+
# # Run transcription function and display
|
93 |
+
# # import pdb;pdb.set_trace()
|
94 |
+
# # st.write(audio_data.getvalue())
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
if submit_button and uploaded_files is not None:
|
99 |
+
# Initialize a list to store detected languages
|
100 |
+
detected_languages = []
|
101 |
+
|
102 |
+
for uploaded_file in uploaded_files:
|
103 |
+
# Read the uploaded file data
|
104 |
+
waveform, sampling_rate = ta.load(BytesIO(uploaded_file.read()))
|
105 |
+
|
106 |
+
# Resample if necessary
|
107 |
+
if sampling_rate != SAMPLING_RATE:
|
108 |
+
waveform = ta.functional.resample(waveform, orig_freq=sampling_rate, new_freq=SAMPLING_RATE)
|
109 |
+
|
110 |
+
# Detect language
|
111 |
+
detected_language = detect_language(waveform, SAMPLING_RATE)
|
112 |
+
detected_languages.append(detected_language)
|
113 |
+
|
114 |
+
# Display each uploaded file with its detected language and an audio player
|
115 |
+
for i, uploaded_file in enumerate(uploaded_files):
|
116 |
+
col1, col2 = st.columns([1, 3]) # Two columns, one for the player, one for the buttons
|
117 |
+
|
118 |
+
with col1:
|
119 |
+
st.write(f"**File name**: {uploaded_file.name}")
|
120 |
+
st.audio(BytesIO(uploaded_file.getvalue()), format=uploaded_file.type)
|
121 |
+
st.write(f"**Detected Language**: {detected_languages[i]}")
|
122 |
+
|
123 |
+
with col2:
|
124 |
+
# Add Transcription and Translation buttons
|
125 |
+
if st.button(f"Transcribe {uploaded_file.name}"):
|
126 |
+
# Transcription process
|
127 |
+
input_features = processor(waveform[0], sampling_rate=SAMPLING_RATE, return_tensors='pt').input_features
|
128 |
+
predicted_ids = model.generate(input_features)
|
129 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
130 |
+
for line in transcription:
|
131 |
+
st.write(line)
|
132 |
+
|
133 |
+
if st.button(f"Translate {uploaded_file.name}"):
|
134 |
+
# Translation process
|
135 |
+
with open('languages.pkl', 'rb') as f:
|
136 |
+
lang_dict = pickle.load(f)
|
137 |
+
detected_language_name = lang_dict[detected_languages[i]]
|
138 |
+
|
139 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language=detected_language_name, task="translate")
|
140 |
+
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
141 |
+
translation = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
142 |
+
for line in translation:
|
143 |
+
st.write(line)
|