File size: 8,826 Bytes
33009e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import streamlit as st
import requests
import logging
import time
from typing import Dict, Any, Optional, List
import os
from PIL import Image
import pytesseract
import fitz  # PyMuPDF
from io import BytesIO
import hashlib
from sentence_transformers import SentenceTransformer
import numpy as np
from pathlib import Path
import pickle
import tempfile

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Initialize SBERT model for embeddings
@st.cache_resource
def load_embedding_model():
    return SentenceTransformer('all-MiniLM-L6-v2')

# Modified Vector Store Class
class SimpleVectorStore:
    def __init__(self):
        self.documents = []
        self.embeddings = []

    def add_document(self, text: str, embedding: np.ndarray):
        self.documents.append(text)
        self.embeddings.append(embedding)

    def search(self, query_embedding: np.ndarray, top_k: int = 3) -> List[str]:
        if not self.embeddings:
            return []
        
        similarities = np.dot(self.embeddings, query_embedding)
        top_indices = np.argsort(similarities)[-top_k:][::-1]
        return [self.documents[i] for i in top_indices]

# Document processing functions
def process_text(text: str) -> List[str]:
    """Split text into chunks."""
    # Simple splitting by sentences (can be improved with better chunking)
    chunks = text.split('. ')
    return [chunk + '.' for chunk in chunks if chunk]

def process_image(image) -> str:
    """Extract text from image using OCR."""
    try:
        text = pytesseract.image_to_string(image)
        return text
    except Exception as e:
        logger.error(f"Error processing image: {str(e)}")
        return ""

def process_pdf(pdf_file) -> str:
    """Extract text from PDF."""
    try:
        with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
            tmp_file.write(pdf_file.read())
            tmp_file.flush()
            
            doc = fitz.open(tmp_file.name)
            text = ""
            for page in doc:
                text += page.get_text()
            doc.close()
            os.unlink(tmp_file.name)
            return text
    except Exception as e:
        logger.error(f"Error processing PDF: {str(e)}")
        return ""

# Initialize session state
if "messages" not in st.session_state:
    st.session_state.messages = []
if "request_timestamps" not in st.session_state:
    st.session_state.request_timestamps = []
if "vector_store" not in st.session_state:
    st.session_state.vector_store = SimpleVectorStore()

# Rate limiting configuration
RATE_LIMIT_PERIOD = 60
MAX_REQUESTS_PER_PERIOD = 30

def check_rate_limit() -> bool:
    """Check if we're within rate limits."""
    current_time = time.time()
    st.session_state.request_timestamps = [
        ts for ts in st.session_state.request_timestamps 
        if current_time - ts < RATE_LIMIT_PERIOD
    ]
    
    if len(st.session_state.request_timestamps) >= MAX_REQUESTS_PER_PERIOD:
        return False
    
    st.session_state.request_timestamps.append(current_time)
    return True

def query(payload: Dict[str, Any], api_url: str) -> Optional[Dict[str, Any]]:
    """Query the Hugging Face API with error handling and rate limiting."""
    if not check_rate_limit():
        raise Exception(f"Rate limit exceeded. Please wait {RATE_LIMIT_PERIOD} seconds.")
    
    try:
        headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"}
        response = requests.post(api_url, headers=headers, json=payload, timeout=30)
        
        if response.status_code == 429:
            raise Exception("Too many requests. Please try again later.")
        
        response.raise_for_status()
        print(response.request.url)
        print(response.request.headers)
        print(response.request.body)
        print(response)
        return response.json()
    except requests.exceptions.JSONDecodeError as e:
        logger.error(f"API request failed: {str(e)}")
        raise

# Enhanced response validation
def process_response(response: Dict[str, Any]) -> str:
    if not isinstance(response, list) or not response:
        raise ValueError("Invalid response format")
    
    if 'generated_text' not in response[0]:
        raise ValueError("Unexpected response structure")
    
    text = response[0]['generated_text'].strip()

# Page configuration
st.set_page_config(
    page_title="RAG-Enabled DeepSeek Chatbot",
    page_icon="🤖",
    layout="wide"
)

# Sidebar configuration
with st.sidebar:
    st.header("Model Configuration")
    st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)")

    model_options = [
        "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
    ]
    selected_model = st.selectbox("Select Model", model_options, index=0)

    system_message = st.text_area(
        "System Message",
        value="You are a friendly chatbot with RAG capabilities. Use the provided context to answer questions accurately. If the context doesn't contain relevant information, say so.",
        height=100
    )

    max_tokens = st.slider("Max Tokens", 10, 4000, 100)
    temperature = st.slider("Temperature", 0.1, 4.0, 0.3)
    top_p = st.slider("Top-p", 0.1, 1.0, 0.6)

    # File upload section
    st.header("Upload Knowledge Base")
    uploaded_files = st.file_uploader(
        "Upload files (PDF, Images, Text)", 
        type=['pdf', 'png', 'jpg', 'jpeg', 'txt'],
        accept_multiple_files=True
    )

# Process uploaded files
if uploaded_files:
    embedding_model = load_embedding_model()
    
    for file in uploaded_files:
        try:
            if file.type == "application/pdf":
                text = process_pdf(file)
            elif file.type.startswith("image/"):
                image = Image.open(file)
                text = process_image(image)
            else:  # text files
                text = file.getvalue().decode()

            chunks = process_text(text)
            for chunk in chunks:
                embedding = embedding_model.encode(chunk)
                st.session_state.vector_store.add_document(chunk, embedding)

            st.sidebar.success(f"Successfully processed {file.name}")
        except Exception as e:
            st.sidebar.error(f"Error processing {file.name}: {str(e)}")

# Main chat interface
st.title("🤖 RAG-Enabled DeepSeek Chatbot")
st.caption("Upload documents in the sidebar to enhance the chatbot's knowledge")

# Display chat history
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Handle user input
if prompt := st.chat_input("Type your message..."):
    # Display user message
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    try:
        with st.spinner("Generating response..."):
            embedding_model = load_embedding_model()
            query_embedding = embedding_model.encode(prompt)
            relevant_contexts = st.session_state.vector_store.search(query_embedding)
            
            # Dynamic context handling
            context_text = "\n".join(relevant_contexts) if relevant_contexts else ""
            system_msg = (
                f"{system_message} Use the provided context to answer accurately."
                if context_text
                else system_message
            )

            # Format for DeepSeek model
            full_prompt = f"""<|beginofutterance|>System: {system_msg}
{context_text if context_text else ''}
<|endofutterance|>
<|beginofutterance|>User: {prompt}<|endofutterance|>
<|beginofutterance|>Assistant:"""

            payload = {
                "inputs": full_prompt,
                "parameters": {
                    "max_new_tokens": max_tokens,
                    "temperature": temperature,
                    "top_p": top_p,
                    "return_full_text": False
                }
            }

            api_url = f"https://api-inference.huggingface.co/models/{selected_model}"
            
            # Get and process response
            output = query(payload, api_url)
            if output:
                response_text = process_response(output)
                
                # Display assistant response
                with st.chat_message("assistant"):
                    st.markdown(response_text)
                
                # Update chat history
                st.session_state.messages.append({
                    "role": "assistant",
                    "content": response_text
                })

    except Exception as e:
        logger.error(f"Error: {str(e)}", exc_info=True)
        st.error(f"Error: {str(e)}")