Spaces:
Sleeping
Sleeping
import os | |
import requests | |
from flask import Flask, request, jsonify | |
from llama_cpp import Llama | |
import subprocess | |
import time | |
import json | |
app = Flask(__name__) | |
# Use /tmp directory for storing the model | |
MODEL_DIR = "/tmp/model" | |
MODEL_PATH = os.path.join(MODEL_DIR, "calme-3.3-llamaloi-3b.Q4_K_M.gguf") | |
GH_PAT = os.getenv("GH_PAT") # GitHub Personal Access Token | |
REPO_URL = "https://github.com/NitinBot001/Audio-url-new-js.git" | |
def download_model(): | |
os.makedirs(MODEL_DIR, exist_ok=True) # Create the /tmp/model directory | |
if not os.path.exists(MODEL_PATH): | |
print("Downloading model...") | |
r = requests.get( | |
"https://huggingface.co/MaziyarPanahi/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b.Q4_K_M.gguf", | |
stream=True, | |
) | |
with open(MODEL_PATH, "wb") as f: | |
for chunk in r.iter_content(chunk_size=8192): | |
f.write(chunk) | |
def start_tunnel(): | |
# Start nport tunnel | |
tunnel_process = subprocess.Popen( | |
["npx", "nport", "-s", "ai-service", "-p", "7860"], # Use port 7860 | |
stdout=subprocess.PIPE, | |
stderr=subprocess.PIPE, | |
) | |
time.sleep(10) # Wait for tunnel to establish | |
# Extract tunnel URL from logs | |
tunnel_url = None | |
for line in iter(tunnel_process.stdout.readline, b""): | |
line = line.decode("utf-8").strip() | |
if "your domain is:" in line: | |
tunnel_url = line.split("your domain is: ")[1] | |
break | |
if not tunnel_url: | |
raise Exception("Failed to extract tunnel URL") | |
return tunnel_url | |
def push_tunnel_url_to_repo(tunnel_url): | |
# Create instance.json | |
instance_data = {"tunnel_url": tunnel_url} | |
with open("/tmp/instance.json", "w") as f: | |
json.dump(instance_data, f) | |
# Clone the repository | |
repo_dir = "/tmp/repo" | |
repo_url = f"https://x-access-token:{GH_PAT}@github.com/NitinBot001/Audio-url-new-js.git" | |
subprocess.run( | |
["git", "clone", repo_url, repo_dir], | |
check=True, | |
) | |
os.chdir(repo_dir) | |
# Move instance.json to the repository | |
subprocess.run(["mv", "/tmp/instance.json", "."], check=True) | |
# Configure Git locally (without --global) | |
subprocess.run(["git", "config", "user.email", "[email protected]"], check=True) | |
subprocess.run(["git", "config", "user.name", "github-actions"], check=True) | |
# Commit and push changes | |
subprocess.run(["git", "add", "instance.json"], check=True) | |
subprocess.run(["git", "commit", "-m", f"Update tunnel URL to {tunnel_url}"], check=True) | |
subprocess.run(["git", "push", "origin", "main"], check=True) | |
def chat(): | |
data = request.json | |
# Construct the prompt without duplicate special tokens | |
prompt = ( | |
f"<|begin_of_text|>" | |
f"<|start_header_id|>user<|end_header_id|>\n" | |
f"{data.get('message', '')}" | |
f"<|eot_id|>\n" | |
f"<|start_header_id|>assistant<|end_header_id|>\n" | |
) | |
output = llm( | |
prompt, | |
max_tokens=2048, | |
stop=["<|eot_id|>"], | |
temperature=0.8, | |
top_p=0.9, | |
) | |
return jsonify({"response": output["choices"][0]["text"].strip()}) | |
if __name__ == "__main__": | |
# Download the model | |
download_model() | |
# Initialize the LLM | |
llm = Llama( | |
model_path=MODEL_PATH, | |
n_ctx=131072, # Set to match the training context length | |
n_threads=2, | |
n_gpu_layers=0, | |
verbose=False, | |
) | |
# Start the tunnel and push the URL | |
tunnel_url = start_tunnel() | |
push_tunnel_url_to_repo(tunnel_url) | |
# Run the Flask app (for development only) | |
app.run(host="0.0.0.0", port=7860) |