from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer import gradio as gr import torch from concurrent.futures import ThreadPoolExecutor # Load models with quantization (8-bit) for faster inference def load_quantized_model(model_name): model = AutoModelForSequenceClassification.from_pretrained(model_name, load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained(model_name) return pipeline("text-classification", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1) # Load models in parallel during startup with ThreadPoolExecutor() as executor: sentiment_future = executor.submit(load_quantized_model, "cardiffnlp/twitter-roberta-base-sentiment") emotion_future = executor.submit(load_quantized_model, "bhadresh-savani/bert-base-uncased-emotion") sentiment_pipeline = sentiment_future.result() emotion_pipeline = emotion_future.result() # Cache recent predictions to avoid recomputation CACHE_SIZE = 100 prediction_cache = {} def analyze_text(text): # Check cache first if text in prediction_cache: return prediction_cache[text] # Parallel model execution with ThreadPoolExecutor() as executor: sentiment_future = executor.submit(sentiment_pipeline, text) emotion_future = executor.submit(emotion_pipeline, text) sentiment_result = sentiment_future.result()[0] emotion_result = emotion_future.result()[0] # Format response result = { "Sentiment": {sentiment_result['label']: round(sentiment_result['score'], 4)}, "Emotion": {emotion_result['label']: round(emotion_result['score'], 4)} } # Update cache if len(prediction_cache) >= CACHE_SIZE: prediction_cache.pop(next(iter(prediction_cache))) prediction_cache[text] = result return result # Optimized Gradio interface with batch processing demo = gr.Interface( fn=analyze_text, inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"), outputs=gr.Label(label="Analysis Results"), title="🚀 Fast Sentiment & Emotion Analysis", description="Optimized version using quantized models and parallel processing", examples=[ ["I'm thrilled to start this new adventure!"], ["This situation is making me really frustrated."], ["I feel so heartbroken and lost."] ], theme="soft", allow_flagging="never" ) # Warm up models with sample input analyze_text("Warming up models...") if __name__ == "__main__": demo.launch()