from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer import gradio as gr import torch from concurrent.futures import ThreadPoolExecutor from threading import Lock # Global cache settings and lock for thread-safety CACHE_SIZE = 100 prediction_cache = {} cache_lock = Lock() # Function to load models with 8-bit quantization def load_quantized_model(model_name): try: model = AutoModelForSequenceClassification.from_pretrained(model_name, load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained(model_name) device = 0 if torch.cuda.is_available() else -1 pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=device) print(f"Loaded model: {model_name}") return pipe except Exception as e: print(f"Error loading model '{model_name}': {e}") raise e # Load both models concurrently at startup with ThreadPoolExecutor() as executor: sentiment_future = executor.submit(load_quantized_model, "cardiffnlp/twitter-roberta-base-sentiment") emotion_future = executor.submit(load_quantized_model, "bhadresh-savani/bert-base-uncased-emotion") sentiment_pipeline = sentiment_future.result() emotion_pipeline = emotion_future.result() def analyze_text(text): # Check cache first (using lock for thread-safety) with cache_lock: if text in prediction_cache: return prediction_cache[text] try: # Execute both model inferences in parallel with ThreadPoolExecutor() as executor: sentiment_future = executor.submit(sentiment_pipeline, text) emotion_future = executor.submit(emotion_pipeline, text) sentiment_result = sentiment_future.result()[0] emotion_result = emotion_future.result()[0] # Prepare a clear, rounded output result = { "Sentiment": {sentiment_result['label']: round(sentiment_result['score'], 4)}, "Emotion": {emotion_result['label']: round(emotion_result['score'], 4)} } except Exception as e: result = {"error": str(e)} # Update cache with lock protection with cache_lock: if len(prediction_cache) >= CACHE_SIZE: prediction_cache.pop(next(iter(prediction_cache))) prediction_cache[text] = result return result # Gradio interface: using gr.JSON to display structured output demo = gr.Interface( fn=analyze_text, inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"), outputs=gr.JSON(label="Analysis Results"), title="🚀 Fast Sentiment & Emotion Analysis", description="An optimized application using 8-bit quantized models and parallel processing for fast inference.", examples=[ ["I'm thrilled to start this new adventure!"], ["This situation is making me really frustrated."], ["I feel so heartbroken and lost."] ], theme="soft", allow_flagging="never" ) # Warm up the models with a sample input to reduce first-call latency _ = analyze_text("Warming up models...") if __name__ == "__main__": demo.launch()