Spaces:
Runtime error
Runtime error
# import torch | |
# from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor | |
# import gradio as gr | |
# from PIL import Image | |
# # Load model and processor | |
# model_name = "google/pix2struct-docvqa-large" | |
# model = Pix2StructForConditionalGeneration.from_pretrained(model_name) | |
# processor = Pix2StructProcessor.from_pretrained(model_name) | |
# def process_image(image_path): | |
# try: | |
# # Load the image | |
# image = Image.open(image_path).convert("RGB") | |
# # Prepare the input | |
# inputs = processor(images=image, text="What does this image say?", return_tensors="pt") | |
# # Generate prediction | |
# output = model.generate(**inputs) | |
# # Decode the output | |
# solution = processor.decode(output[0], skip_special_tokens=True) | |
# return solution | |
# except Exception as e: | |
# return f"Error processing image: {str(e)}" | |
# def predict(image): | |
# """Handles image input for Gradio.""" | |
# return process_image(image) | |
# # Gradio app | |
# iface = gr.Interface( | |
# fn=predict, | |
# inputs=gr.Image(type="filepath"), | |
# outputs="text", | |
# title="Image Text Solution" | |
# ) | |
# if __name__ == "__main__": | |
# iface.launch() | |