Nitin00043's picture
Update app.py
ddc7f6f verified
# import torch
# from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
# import gradio as gr
# from PIL import Image
# # Load model and processor
# model_name = "google/pix2struct-docvqa-large"
# model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
# processor = Pix2StructProcessor.from_pretrained(model_name)
# def process_image(image_path):
# try:
# # Load the image
# image = Image.open(image_path).convert("RGB")
# # Prepare the input
# inputs = processor(images=image, text="What does this image say?", return_tensors="pt")
# # Generate prediction
# output = model.generate(**inputs)
# # Decode the output
# solution = processor.decode(output[0], skip_special_tokens=True)
# return solution
# except Exception as e:
# return f"Error processing image: {str(e)}"
# def predict(image):
# """Handles image input for Gradio."""
# return process_image(image)
# # Gradio app
# iface = gr.Interface(
# fn=predict,
# inputs=gr.Image(type="filepath"),
# outputs="text",
# title="Image Text Solution"
# )
# if __name__ == "__main__":
# iface.launch()