Nitin00043's picture
Update app.py
e50f30c verified
raw
history blame
2.05 kB
import torch
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
import gradio as gr
from PIL import Image
# Use a valid model identifier. Here we use "google/matcha-base".
model_name = "google/matcha-base"
# Load the pre-trained Pix2Struct model and processor
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
processor = Pix2StructProcessor.from_pretrained(model_name)
# Move model to GPU if available for faster inference
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def solve_math_problem(image):
# Preprocess the image and include a clear prompt.
# You can adjust the prompt to better match your task if needed.
inputs = processor(images=image, text="Solve the math problem:", return_tensors="pt")
# Ensure the tensors are on the same device as the model
inputs = {key: value.to(device) for key, value in inputs.items()}
# Generate the solution using beam search.
# Adjust parameters for best performance:
# - max_new_tokens: Allows longer responses.
# - num_beams: Uses beam search to explore multiple hypotheses.
# - early_stopping: Stops decoding once a complete answer is generated.
# - temperature: Controls randomness (lower value = more deterministic).
predictions = model.generate(
**inputs,
max_new_tokens=150,
num_beams=5,
early_stopping=True,
temperature=0.5
)
# Decode the output to get a string answer, skipping any special tokens.
solution = processor.decode(predictions[0], skip_special_tokens=True)
return solution
# Set up a Gradio interface
demo = gr.Interface(
fn=solve_math_problem,
inputs=gr.Image(type="pil", label="Upload Handwritten Math Problem"),
outputs=gr.Textbox(label="Solution"),
title="Handwritten Math Problem Solver",
description="Upload an image of a handwritten math problem and the model will attempt to solve it.",
theme="soft"
)
if __name__ == "__main__":
demo.launch()