Nitin00043's picture
Update app.py
4a01533 verified
raw
history blame
1.43 kB
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
import gradio as gr
from PIL import Image
# Use a valid model identifier.
# Replace "google/matcha-base" with your checkpoint if you have one.
model_name = "google/matcha-base"
# Load the pre-trained Pix2Struct model and processor
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
processor = Pix2StructProcessor.from_pretrained(model_name)
# Function to solve handwritten math problems
def solve_math_problem(image):
# Preprocess the image: here we render a prompt asking the model to solve the problem.
inputs = processor(images=image, text="Solve the math problem:", return_tensors="pt")
# Generate the solution
predictions = model.generate(**inputs, max_new_tokens=100)
# Decode the output
solution = processor.decode(predictions[0], skip_special_tokens=True)
return solution
# Gradio interface
demo = gr.Interface(
fn=solve_math_problem,
inputs=gr.Image(type="pil", label="Upload Handwritten Math Problem"),
outputs=gr.Textbox(label="Solution"),
title="Handwritten Math Problem Solver",
description="Upload an image of a handwritten math problem, and the model will attempt to solve it.",
examples=[
["example1.jpg"], # Add example images if available
["example2.jpg"]
],
theme="soft"
)
if __name__ == "__main__":
demo.launch()