File size: 2,166 Bytes
3dc1b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
import gradio as gr
from PIL import Image

# Load the pre-trained Pix2Struct model and processor
model_name = "google/pix2struct-mathqa-base"
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
processor = Pix2StructProcessor.from_pretrained(model_name)

def solve_math_problem(image):
    try:
        # Preprocess the image
        image = image.convert("RGB")  # Ensure RGB format
        inputs = processor(
            images=[image],  # Wrap in list
            text="Solve the following math problem:",  # More specific prompt
            return_tensors="pt",
            max_patches=2048,  # Increased from default 1024 for better math handling
            header_text="Math Problem"  # Add header text
        )
        
        # Generate the solution
        predictions = model.generate(
            **inputs,
            max_new_tokens=200,
            early_stopping=True,
            num_beams=4,
            temperature=0.2
        )
        
        # Decode the output
        solution = processor.decode(
            predictions[0], 
            skip_special_tokens=True,
            clean_up_tokenization_spaces=True
        )
        
        # Format the solution
        return f"Problem: {processor.decode(inputs.input_ids[0])}\nSolution: {solution}"
        
    except Exception as e:
        return f"Error processing image: {str(e)}"

# Gradio interface with explicit image handling
demo = gr.Interface(
    fn=solve_math_problem,
    inputs=gr.Image(
        type="pil", 
        label="Upload Handwritten Math Problem",
        image_mode="RGB",  # Force RGB format
        source="upload"
    ),
    outputs=gr.Textbox(label="Solution", show_copy_button=True),
    title="Handwritten Math Problem Solver",
    description="Upload an image of a handwritten math problem (algebra, arithmetic, etc.) and get the solution",
    examples=[
        ["example_addition.png"],  # Make sure to upload these files
        ["example_algebra.jpg"]
    ],
    theme="soft",
    allow_flagging="never"
)

if __name__ == "__main__":
    demo.launch()