Nishanth88 commited on
Commit
6eb6008
·
verified ·
1 Parent(s): e0a383d

Update 1 app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -29
app.py CHANGED
@@ -1,11 +1,36 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -14,39 +39,55 @@ def respond(
14
  max_tokens,
15
  temperature,
16
  top_p,
 
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
 
 
 
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(
@@ -56,9 +97,15 @@ demo = gr.ChatInterface(
56
  step=0.05,
57
  label="Top-p (nucleus sampling)",
58
  ),
 
 
 
 
 
 
 
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, VisitWebpageTool, HfApiModel
4
 
5
+ # Initialize HuggingFace client
 
 
6
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
7
 
8
+ # Create the smolagents agent (without UserInputTool since we'll get input from Gradio)
9
+ agent = CodeAgent(
10
+ tools=[DuckDuckGoSearchTool(), VisitWebpageTool(), FinalAnswerTool()],
11
+ model=HfApiModel(),
12
+ max_steps=8,
13
+ verbosity_level=1
14
+ )
15
+
16
+ # Function to perform web research with a provided query
17
+ def research_with_query(query):
18
+ result = agent.run(f"""
19
+ Think step by step:
20
+
21
+ 1. The user has asked about: "{query}"
22
+ 2. Use the DuckDuckGoSearchTool to search the web for information about this query.
23
+ 3. From the search results, identify 1-2 relevant webpage URLs that might contain detailed information.
24
+ 4. Use the VisitWebpageTool to visit each identified webpage and extract its content.
25
+ 5. Combine the information from the search results and webpage visits.
26
+ 6. Create a comprehensive bullet point summary of all collected information.
27
+ 7. Each bullet point should start with "• " and be on a new line.
28
+ 8. Use the FinalAnswerTool to present your bullet-point summary as the final answer.
29
+
30
+ Make sure your bullet points are clear, well-organized, and directly relevant to the user's query.
31
+ Include the most important and factual information from your research.
32
+ """)
33
+ return result
34
 
35
  def respond(
36
  message,
 
39
  max_tokens,
40
  temperature,
41
  top_p,
42
+ use_web_search,
43
  ):
44
+ # Check if web search is enabled and message starts with a research request
45
+ if use_web_search and message.strip().lower().startswith(("search:", "research:", "find info:")):
46
+ query = message.split(":", 1)[1].strip()
47
+
48
+ yield "Searching the web for information about your query. This may take a moment..."
49
+
50
+ try:
51
+ # Perform the web search and get bullet point summary
52
+ research_results = research_with_query(query)
53
+
54
+ # Return the research results
55
+ yield f"Here's what I found about '{query}':\n\n{research_results}"
56
+ except Exception as e:
57
+ yield f"Sorry, I encountered an error while searching the web: {str(e)}"
58
+ else:
59
+ # Regular chat completion for normal messages
60
+ messages = [{"role": "system", "content": system_message}]
61
 
62
+ for val in history:
63
+ if val[0]:
64
+ messages.append({"role": "user", "content": val[0]})
65
+ if val[1]:
66
+ messages.append({"role": "assistant", "content": val[1]})
67
 
68
+ messages.append({"role": "user", "content": message})
69
 
70
+ response = ""
 
 
 
 
 
 
 
71
 
72
+ for message in client.chat_completion(
73
+ messages,
74
+ max_tokens=max_tokens,
75
+ stream=True,
76
+ temperature=temperature,
77
+ top_p=top_p,
78
+ ):
79
+ token = message.choices[0].delta.content
80
+ response += token
81
+ yield response
82
 
83
+ # Create the Gradio interface
 
 
 
84
  demo = gr.ChatInterface(
85
  respond,
86
  additional_inputs=[
87
+ gr.Textbox(
88
+ value="You are a helpful assistant. When users ask you to search for information with 'search:', 'research:', or 'find info:', you will search the web for them.",
89
+ label="System message"
90
+ ),
91
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
92
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
93
  gr.Slider(
 
97
  step=0.05,
98
  label="Top-p (nucleus sampling)",
99
  ),
100
+ gr.Checkbox(value=True, label="Enable web search (use 'search:', 'research:', or 'find info:' to search)")
101
+ ],
102
+ examples=[
103
+ ["search: latest developments in quantum computing"],
104
+ ["research: climate change impacts in 2023"],
105
+ ["find info: benefits of meditation"],
106
+ ["Hello! How are you today?"]
107
  ],
108
  )
109
 
 
110
  if __name__ == "__main__":
111
+ demo.launch()