File size: 2,061 Bytes
0558e79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from octo.model.octo_model import OctoModel
from PIL import Image
import numpy as np
import jax
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import os
import io
import base64

# Set JAX to use CPU platform (adjust if GPU is needed)
os.environ['JAX_PLATFORMS'] = 'cpu'

# Load the model once globally (assumes it's cached locally)
model = OctoModel.load_pretrained("hf://rail-berkeley/octo-small-1.5")

# Initialize FastAPI app
app = FastAPI(title="Octo Model Inference API")

# Define request body model
class InferenceRequest(BaseModel):
    image_base64: str  # Base64-encoded image string
    task: str = "pick up the fork"  # Default task

# Health check endpoint
@app.get("/health")
async def health_check():
    return {"status": "healthy"}

# Inference endpoint
@app.post("/predict")
async def predict(request: InferenceRequest):
    try:
        # Decode base64 image
        img_base64 = request.image_base64
        if img_base64.startswith("data:image"):
            img_base64 = img_base64.split(",")[1]
        
        img_data = base64.b64decode(img_base64)
        img = Image.open(io.BytesIO(img_data)).resize((256, 256))
        img = np.array(img)

        # Add batch and time horizon dimensions
        img = img[np.newaxis, np.newaxis, ...]  # Shape: (1, 1, 256, 256, 3)
        observation = {
            "image_primary": img,
            "timestep_pad_mask": np.array([[True]])
        }

        # Create task and predict actions
        task_obj = model.create_tasks(texts=[request.task])
        actions = model.sample_actions(
            observation, 
            task_obj, 
            unnormalization_statistics=model.dataset_statistics["bridge_dataset"]["action"], 
            rng=jax.random.PRNGKey(0)
        )
        actions = actions[0]

        # Convert NumPy array to list for JSON response
        actions_list = actions.tolist()

        return {"actions": actions_list}
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error processing request: {str(e)}")