import streamlit as st import os import requests from dotenv import load_dotenv # Only needed if using a .env file import re # To help clean up leading whitespace # Langchain and HuggingFace from langchain.vectorstores import Chroma from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_groq import ChatGroq from langchain.chains import RetrievalQA # Load the .env file (if using it) load_dotenv() groq_api_key = os.getenv("GROQ_API_KEY") # Load embeddings, model, and vector store @st.cache_resource # Singleton, prevent multiple initializations def init_chain(): model_kwargs = {'trust_remote_code': True} embedding = HuggingFaceEmbeddings(model_name='nomic-ai/nomic-embed-text-v1.5', model_kwargs=model_kwargs) llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama3-70b-8192", temperature=0.1) vectordb = Chroma(persist_directory='updated_CSPCDB2', embedding_function=embedding) # Create chain chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=vectordb.as_retriever(k=5), return_source_documents=True) return chain # Streamlit app layout st.set_page_config( page_title="CSPC Citizens Charter Conversational Agent", page_icon="cspclogo.png" ) # Custom CSS for styling st.markdown( """ """, unsafe_allow_html=True ) with st.sidebar: # App title st.markdown('
CSPC Conversational Agent
', unsafe_allow_html=True) st.markdown('Your go-to assistant for the Citizen’s Charter of CSPC!
', unsafe_allow_html=True) # Categories st.markdown('''✔️**About CSPC:**''') st.markdown('History, Core Values, Mission and Vision
', unsafe_allow_html=True) st.markdown('''✔️**Admission & Graduation:**''') st.markdown('Apply, Requirements, Process, Graduation
', unsafe_allow_html=True) st.markdown('''✔️**Student Services:**''') st.markdown('Scholarships, Orgs, Facilities
', unsafe_allow_html=True) st.markdown('''✔️**Academics:**''') st.markdown('Degrees, Courses, Faculty
', unsafe_allow_html=True) st.markdown('''✔️**Officials:**''') st.markdown('President, VPs, Deans, Admin
', unsafe_allow_html=True) # Links to resources st.markdown("### 🔗 Quick Access to Resources") st.markdown( """ 📄 [CSPC Citizen’s Charter](https://cspc.edu.ph/governance/citizens-charter/) 🏛️ [About CSPC](https://cspc.edu.ph/about/) 📋 [College Officials](https://cspc.edu.ph/college-officials/) """, unsafe_allow_html=True ) # Store LLM generated responses if "messages" not in st.session_state: st.session_state.chain = init_chain() st.session_state.messages = [{"role": "assistant", "content": "Hello! I am your Conversational Agent for the Citizens Charter of Camarines Sur Polytechnic Colleges (CSPC). How may I assist you today?"}] st.session_state.query_counter = 0 # Track the number of user queries st.session_state.conversation_history = "" # Keep track of history for the LLM def generate_response(prompt_input): try: # Retrieve vector database context using ONLY the current user input retriever = st.session_state.chain.retriever relevant_context = retriever.get_relevant_documents(prompt_input) # Retrieve context only for the current prompt # Format the input for the chain with the retrieved context formatted_input = ( f"You are a Conversational Agent for the Citizens Charter of Camarines Sur Polytechnic Colleges (CSPC). " f"Your purpose is to provide accurate and helpful information about CSPC's policies, procedures, and services as outlined in the Citizens Charter. " f"When responding to user queries:\n" f"1. Always prioritize information from the provided context (Citizens Charter or other CSPC resources).\n" f"2. Be concise, clear, and professional in your responses.\n" f"3. If the user's question is outside the scope of the Citizens Charter, politely inform them and suggest relevant resources or departments they can contact.\n\n" f"Context:\n" f"{' '.join([doc.page_content for doc in relevant_context])}\n\n" f"Conversation:\n{st.session_state.conversation_history}user: {prompt_input}\n" ) # Invoke the RetrievalQA chain directly with the formatted input res = st.session_state.chain.invoke({"query": formatted_input}) # Process the response text result_text = res['result'] # Clean up prefixing phrases and capitalize the first letter if result_text.startswith('According to the provided context, '): result_text = result_text[35:].strip() elif result_text.startswith('Based on the provided context, '): result_text = result_text[31:].strip() elif result_text.startswith('According to the provided text, '): result_text = result_text[34:].strip() elif result_text.startswith('According to the context, '): result_text = result_text[26:].strip() # Ensure the first letter is uppercase result_text = result_text[0].upper() + result_text[1:] if result_text else result_text # Extract and format sources (if available) sources = [] for doc in relevant_context: source_path = doc.metadata.get('source', '') formatted_source = source_path[122:-4] if source_path else "Unknown source" sources.append(formatted_source) # Remove duplicates and combine into a single string unique_sources = list(set(sources)) source_list = ", ".join(unique_sources) # # Combine response text with sources # result_text += f"\n\n**Sources:** {source_list}" if source_list else "\n\n**Sources:** None" # Update conversation history st.session_state.conversation_history += f"user: {prompt_input}\nassistant: {result_text}\n" return result_text except Exception as e: # Handle rate limit or other errors gracefully if "rate_limit_exceeded" in str(e).lower(): return "⚠️ Rate limit exceeded. Please clear the chat history and try again." else: return f"❌ An error occurred: {str(e)}" # Display chat messages for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) # User-provided prompt for input box if prompt := st.chat_input(placeholder="Ask a question..."): # Increment query counter st.session_state.query_counter += 1 # Append user query to session state st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.write(prompt) # Generate and display placeholder for assistant response with st.chat_message("assistant"): message_placeholder = st.empty() # Placeholder for response while it's being generated with st.spinner("Generating response..."): # Use conversation history when generating response response = generate_response(prompt) message_placeholder.markdown(response) # Replace placeholder with actual response st.session_state.messages.append({"role": "assistant", "content": response}) # Check if query counter has reached the limit if st.session_state.query_counter >= 10: st.sidebar.warning("Conversation context has been reset after 10 queries.") st.session_state.query_counter = 0 # Reset the counter st.session_state.conversation_history = "" # Clear conversation history for the LLM # Clear chat history function def clear_chat_history(): # Clear chat messages (reset the assistant greeting) st.session_state.messages = [{"role": "assistant", "content": "Hello! I am your Conversational Agent for the Citizens Charter of Camarines Sur Polytechnic Colleges (CSPC). How may I assist you today?"}] # Reinitialize the chain to clear any stored history (ensures it forgets previous user inputs) st.session_state.chain = init_chain() # Clear the query counter and conversation history st.session_state.query_counter = 0 st.session_state.conversation_history = "" st.sidebar.button('Clear Chat History', on_click=clear_chat_history) # Footer st.sidebar.markdown('Developed by Team XceptionNet
', unsafe_allow_html=True)