Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ import streamlit as st
|
|
2 |
import os
|
3 |
import requests
|
4 |
from dotenv import load_dotenv # Only needed if using a .env file
|
|
|
|
|
5 |
|
6 |
# Langchain and HuggingFace
|
7 |
from langchain.vectorstores import Chroma
|
@@ -68,36 +70,36 @@ if "messages" not in st.session_state:
|
|
68 |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}]
|
69 |
|
70 |
# Function for generating response using the last three conversations
|
71 |
-
def generate_response(prompt_input):
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
|
102 |
|
103 |
# result += res['result']
|
@@ -157,6 +159,7 @@ def generate_response(prompt_input):
|
|
157 |
# return result_text
|
158 |
|
159 |
# return res['result']
|
|
|
160 |
def generate_response(prompt_input):
|
161 |
# Retrieve vector database context using ONLY the current user input
|
162 |
retriever = st.session_state.chain.retriever
|
@@ -182,14 +185,19 @@ def generate_response(prompt_input):
|
|
182 |
|
183 |
# Process the response text
|
184 |
result_text = res['result']
|
|
|
|
|
185 |
if result_text.startswith('According to the provided context, '):
|
186 |
-
result_text = result_text[35:].
|
187 |
elif result_text.startswith('Based on the provided context, '):
|
188 |
-
result_text = result_text[31:].
|
189 |
elif result_text.startswith('According to the provided text, '):
|
190 |
-
result_text = result_text[34:].
|
191 |
elif result_text.startswith('According to the context, '):
|
192 |
-
result_text = result_text[26:].
|
|
|
|
|
|
|
193 |
|
194 |
# Extract and format sources (if available)
|
195 |
sources = []
|
@@ -207,8 +215,6 @@ def generate_response(prompt_input):
|
|
207 |
|
208 |
return result_text
|
209 |
|
210 |
-
|
211 |
-
|
212 |
# Display chat messages
|
213 |
for message in st.session_state.messages:
|
214 |
with st.chat_message(message["role"]):
|
|
|
2 |
import os
|
3 |
import requests
|
4 |
from dotenv import load_dotenv # Only needed if using a .env file
|
5 |
+
import re # To help clean up leading whitespace
|
6 |
+
|
7 |
|
8 |
# Langchain and HuggingFace
|
9 |
from langchain.vectorstores import Chroma
|
|
|
70 |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}]
|
71 |
|
72 |
# Function for generating response using the last three conversations
|
73 |
+
# def generate_response(prompt_input):
|
74 |
+
# # Initialize result
|
75 |
+
# result = ''
|
76 |
+
|
77 |
+
# # Prepare conversation history: get the last 3 user and assistant messages
|
78 |
+
# conversation_history = ""
|
79 |
+
# recent_messages = st.session_state.messages[-3:] # Last 3 user and assistant exchanges (each exchange is 2 messages)
|
80 |
+
|
81 |
+
# for message in recent_messages:
|
82 |
+
# conversation_history += f"{message['role']}: {message['content']}\n"
|
83 |
+
|
84 |
+
# # Append the current user prompt to the conversation history
|
85 |
+
# conversation_history += f"user: {prompt_input}\n"
|
86 |
+
|
87 |
+
# # Invoke chain with the truncated conversation history
|
88 |
+
# res = st.session_state.chain.invoke(conversation_history)
|
89 |
+
|
90 |
+
# # Process response (as in the original code)
|
91 |
+
# if res['result'].startswith('According to the provided context, '):
|
92 |
+
# res['result'] = res['result'][35:]
|
93 |
+
# res['result'] = res['result'][0].upper() + res['result'][1:]
|
94 |
+
# elif res['result'].startswith('Based on the provided context, '):
|
95 |
+
# res['result'] = res['result'][31:]
|
96 |
+
# res['result'] = res['result'][0].upper() + res['result'][1:]
|
97 |
+
# elif res['result'].startswith('According to the provided text, '):
|
98 |
+
# res['result'] = res['result'][34:]
|
99 |
+
# res['result'] = res['result'][0].upper() + res['result'][1:]
|
100 |
+
# elif res['result'].startswith('According to the context, '):
|
101 |
+
# res['result'] = res['result'][26:]
|
102 |
+
# res['result'] = res['result'][0].upper() + res['result'][1:]
|
103 |
|
104 |
|
105 |
# result += res['result']
|
|
|
159 |
# return result_text
|
160 |
|
161 |
# return res['result']
|
162 |
+
|
163 |
def generate_response(prompt_input):
|
164 |
# Retrieve vector database context using ONLY the current user input
|
165 |
retriever = st.session_state.chain.retriever
|
|
|
185 |
|
186 |
# Process the response text
|
187 |
result_text = res['result']
|
188 |
+
|
189 |
+
# Clean up prefixing phrases and capitalize the first letter
|
190 |
if result_text.startswith('According to the provided context, '):
|
191 |
+
result_text = result_text[35:].strip()
|
192 |
elif result_text.startswith('Based on the provided context, '):
|
193 |
+
result_text = result_text[31:].strip()
|
194 |
elif result_text.startswith('According to the provided text, '):
|
195 |
+
result_text = result_text[34:].strip()
|
196 |
elif result_text.startswith('According to the context, '):
|
197 |
+
result_text = result_text[26:].strip()
|
198 |
+
|
199 |
+
# Ensure the first letter is uppercase
|
200 |
+
result_text = result_text[0].upper() + result_text[1:] if result_text else result_text
|
201 |
|
202 |
# Extract and format sources (if available)
|
203 |
sources = []
|
|
|
215 |
|
216 |
return result_text
|
217 |
|
|
|
|
|
218 |
# Display chat messages
|
219 |
for message in st.session_state.messages:
|
220 |
with st.chat_message(message["role"]):
|