Nioooor commited on
Commit
07d1254
·
verified ·
1 Parent(s): d4d53f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -36
app.py CHANGED
@@ -2,6 +2,8 @@ import streamlit as st
2
  import os
3
  import requests
4
  from dotenv import load_dotenv # Only needed if using a .env file
 
 
5
 
6
  # Langchain and HuggingFace
7
  from langchain.vectorstores import Chroma
@@ -68,36 +70,36 @@ if "messages" not in st.session_state:
68
  st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}]
69
 
70
  # Function for generating response using the last three conversations
71
- def generate_response(prompt_input):
72
- # Initialize result
73
- result = ''
74
-
75
- # Prepare conversation history: get the last 3 user and assistant messages
76
- conversation_history = ""
77
- recent_messages = st.session_state.messages[-3:] # Last 3 user and assistant exchanges (each exchange is 2 messages)
78
-
79
- for message in recent_messages:
80
- conversation_history += f"{message['role']}: {message['content']}\n"
81
-
82
- # Append the current user prompt to the conversation history
83
- conversation_history += f"user: {prompt_input}\n"
84
-
85
- # Invoke chain with the truncated conversation history
86
- res = st.session_state.chain.invoke(conversation_history)
87
-
88
- # Process response (as in the original code)
89
- if res['result'].startswith('According to the provided context, '):
90
- res['result'] = res['result'][35:]
91
- res['result'] = res['result'][0].upper() + res['result'][1:]
92
- elif res['result'].startswith('Based on the provided context, '):
93
- res['result'] = res['result'][31:]
94
- res['result'] = res['result'][0].upper() + res['result'][1:]
95
- elif res['result'].startswith('According to the provided text, '):
96
- res['result'] = res['result'][34:]
97
- res['result'] = res['result'][0].upper() + res['result'][1:]
98
- elif res['result'].startswith('According to the context, '):
99
- res['result'] = res['result'][26:]
100
- res['result'] = res['result'][0].upper() + res['result'][1:]
101
 
102
 
103
  # result += res['result']
@@ -157,6 +159,7 @@ def generate_response(prompt_input):
157
  # return result_text
158
 
159
  # return res['result']
 
160
  def generate_response(prompt_input):
161
  # Retrieve vector database context using ONLY the current user input
162
  retriever = st.session_state.chain.retriever
@@ -182,14 +185,19 @@ def generate_response(prompt_input):
182
 
183
  # Process the response text
184
  result_text = res['result']
 
 
185
  if result_text.startswith('According to the provided context, '):
186
- result_text = result_text[35:].capitalize()
187
  elif result_text.startswith('Based on the provided context, '):
188
- result_text = result_text[31:].capitalize()
189
  elif result_text.startswith('According to the provided text, '):
190
- result_text = result_text[34:].capitalize()
191
  elif result_text.startswith('According to the context, '):
192
- result_text = result_text[26:].capitalize()
 
 
 
193
 
194
  # Extract and format sources (if available)
195
  sources = []
@@ -207,8 +215,6 @@ def generate_response(prompt_input):
207
 
208
  return result_text
209
 
210
-
211
-
212
  # Display chat messages
213
  for message in st.session_state.messages:
214
  with st.chat_message(message["role"]):
 
2
  import os
3
  import requests
4
  from dotenv import load_dotenv # Only needed if using a .env file
5
+ import re # To help clean up leading whitespace
6
+
7
 
8
  # Langchain and HuggingFace
9
  from langchain.vectorstores import Chroma
 
70
  st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}]
71
 
72
  # Function for generating response using the last three conversations
73
+ # def generate_response(prompt_input):
74
+ # # Initialize result
75
+ # result = ''
76
+
77
+ # # Prepare conversation history: get the last 3 user and assistant messages
78
+ # conversation_history = ""
79
+ # recent_messages = st.session_state.messages[-3:] # Last 3 user and assistant exchanges (each exchange is 2 messages)
80
+
81
+ # for message in recent_messages:
82
+ # conversation_history += f"{message['role']}: {message['content']}\n"
83
+
84
+ # # Append the current user prompt to the conversation history
85
+ # conversation_history += f"user: {prompt_input}\n"
86
+
87
+ # # Invoke chain with the truncated conversation history
88
+ # res = st.session_state.chain.invoke(conversation_history)
89
+
90
+ # # Process response (as in the original code)
91
+ # if res['result'].startswith('According to the provided context, '):
92
+ # res['result'] = res['result'][35:]
93
+ # res['result'] = res['result'][0].upper() + res['result'][1:]
94
+ # elif res['result'].startswith('Based on the provided context, '):
95
+ # res['result'] = res['result'][31:]
96
+ # res['result'] = res['result'][0].upper() + res['result'][1:]
97
+ # elif res['result'].startswith('According to the provided text, '):
98
+ # res['result'] = res['result'][34:]
99
+ # res['result'] = res['result'][0].upper() + res['result'][1:]
100
+ # elif res['result'].startswith('According to the context, '):
101
+ # res['result'] = res['result'][26:]
102
+ # res['result'] = res['result'][0].upper() + res['result'][1:]
103
 
104
 
105
  # result += res['result']
 
159
  # return result_text
160
 
161
  # return res['result']
162
+
163
  def generate_response(prompt_input):
164
  # Retrieve vector database context using ONLY the current user input
165
  retriever = st.session_state.chain.retriever
 
185
 
186
  # Process the response text
187
  result_text = res['result']
188
+
189
+ # Clean up prefixing phrases and capitalize the first letter
190
  if result_text.startswith('According to the provided context, '):
191
+ result_text = result_text[35:].strip()
192
  elif result_text.startswith('Based on the provided context, '):
193
+ result_text = result_text[31:].strip()
194
  elif result_text.startswith('According to the provided text, '):
195
+ result_text = result_text[34:].strip()
196
  elif result_text.startswith('According to the context, '):
197
+ result_text = result_text[26:].strip()
198
+
199
+ # Ensure the first letter is uppercase
200
+ result_text = result_text[0].upper() + result_text[1:] if result_text else result_text
201
 
202
  # Extract and format sources (if available)
203
  sources = []
 
215
 
216
  return result_text
217
 
 
 
218
  # Display chat messages
219
  for message in st.session_state.messages:
220
  with st.chat_message(message["role"]):