Nioooor's picture
Update app.py
59321ff verified
raw
history blame
7.19 kB
import streamlit as st
import os
import requests
from dotenv import load_dotenv # Only needed if using a .env file
import re # To help clean up leading whitespace
# Langchain and HuggingFace
from langchain.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_groq import ChatGroq
from langchain.chains import RetrievalQA
# Load the .env file (if using it)
load_dotenv()
groq_api_key = os.getenv("GROQ_API_KEY")
# Load embeddings, model, and vector store
@st.cache_resource # Singleton, prevent multiple initializations
def init_chain():
model_kwargs = {'trust_remote_code': True}
embedding = HuggingFaceEmbeddings(model_name='nomic-ai/nomic-embed-text-v1.5', model_kwargs=model_kwargs)
llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama3-70b-8192", temperature=0.2)
vectordb = Chroma(persist_directory='updated_CSPCDB2', embedding_function=embedding)
# Create chain
chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=vectordb.as_retriever(k=5),
return_source_documents=True)
return chain
# Streamlit app layout
st.set_page_config(
page_title="CSPC Citizens Charter Conversational Agent",
page_icon="cspclogo.png"
)
with st.sidebar:
st.title('CSPCean Conversational Agent')
st.subheader('Ask anything CSPC Related here!')
st.markdown('''**About CSPC:**
History, Core Values, Mission and Vision''')
st.markdown('''**Admission & Graduation:**
Apply, Requirements, Process, Graduation''')
st.markdown('''**Student Services:**
Scholarships, Orgs, Facilities''')
st.markdown('''**Academics:**
Degrees, Courses, Faculty''')
st.markdown('''**Officials:**
President, VPs, Deans, Admin''')
st.markdown('''
Access the resources here:
- [CSPC Citizen’s Charter](https://cspc.edu.ph/governance/citizens-charter/)
- [About CSPC](https://cspc.edu.ph/about/)
- [College Officials](https://cspc.edu.ph/college-officials/)
''')
st.markdown('Team XceptionNet')
# Store LLM generated responses
if "messages" not in st.session_state:
st.session_state.chain = init_chain()
st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}]
st.session_state.query_counter = 0 # Track the number of user queries
st.session_state.conversation_history = "" # Keep track of history for the LLM
def generate_response(prompt_input):
try:
# Retrieve vector database context using ONLY the current user input
retriever = st.session_state.chain.retriever
relevant_context = retriever.get_relevant_documents(prompt_input) # Retrieve context only for the current prompt
# Format the input for the chain with the retrieved context
formatted_input = (
f"Context:\n"
f"{' '.join([doc.page_content for doc in relevant_context])}\n\n"
f"Conversation:\n{st.session_state.conversation_history}user: {prompt_input}\n"
)
# Invoke the RetrievalQA chain directly with the formatted input
res = st.session_state.chain.invoke({"query": formatted_input})
# Process the response text
result_text = res['result']
# Clean up prefixing phrases and capitalize the first letter
if result_text.startswith('According to the provided context, '):
result_text = result_text[35:].strip()
elif result_text.startswith('Based on the provided context, '):
result_text = result_text[31:].strip()
elif result_text.startswith('According to the provided text, '):
result_text = result_text[34:].strip()
elif result_text.startswith('According to the context, '):
result_text = result_text[26:].strip()
# Ensure the first letter is uppercase
result_text = result_text[0].upper() + result_text[1:] if result_text else result_text
# Extract and format sources (if available)
sources = []
for doc in relevant_context:
source_path = doc.metadata.get('source', '')
formatted_source = source_path[122:-4] if source_path else "Unknown source"
sources.append(formatted_source)
# Remove duplicates and combine into a single string
unique_sources = list(set(sources))
source_list = ", ".join(unique_sources)
# # Combine response text with sources
# result_text += f"\n\n**Sources:** {source_list}" if source_list else "\n\n**Sources:** None"
# Update conversation history
st.session_state.conversation_history += f"user: {prompt_input}\nassistant: {result_text}\n"
return result_text
except Exception as e:
# Handle rate limit or other errors gracefully
if "rate_limit_exceeded" in str(e).lower():
return "⚠️ Rate limit exceeded. Please clear the chat history and try again."
else:
return f"❌ An error occurred: {str(e)}"
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# User-provided prompt for input box
if prompt := st.chat_input(placeholder="Ask a question..."):
# Increment query counter
st.session_state.query_counter += 1
# Append user query to session state
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate and display placeholder for assistant response
with st.chat_message("assistant"):
message_placeholder = st.empty() # Placeholder for response while it's being generated
with st.spinner("Generating response..."):
# Use conversation history when generating response
response = generate_response(prompt)
message_placeholder.markdown(response) # Replace placeholder with actual response
st.session_state.messages.append({"role": "assistant", "content": response})
# Check if query counter has reached the limit
if st.session_state.query_counter >= 10:
st.sidebar.warning("Conversation context has been reset after 10 queries.")
st.session_state.query_counter = 0 # Reset the counter
st.session_state.conversation_history = "" # Clear conversation history for the LLM
# Clear chat history function
def clear_chat_history():
# Clear chat messages (reset the assistant greeting)
st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}]
# Reinitialize the chain to clear any stored history (ensures it forgets previous user inputs)
st.session_state.chain = init_chain()
# Clear the query counter and conversation history
st.session_state.query_counter = 0
st.session_state.conversation_history = ""
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)