Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
import requests | |
from dotenv import load_dotenv # Only needed if using a .env file | |
import re # To help clean up leading whitespace | |
# Langchain and HuggingFace | |
from langchain.vectorstores import Chroma | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_groq import ChatGroq | |
from langchain.chains import RetrievalQA | |
# Load the .env file (if using it) | |
load_dotenv() | |
groq_api_key = os.getenv("GROQ_API_KEY") | |
# Load embeddings, model, and vector store | |
# Singleton, prevent multiple initializations | |
def init_chain(): | |
model_kwargs = {'trust_remote_code': True} | |
embedding = HuggingFaceEmbeddings(model_name='nomic-ai/nomic-embed-text-v1.5', model_kwargs=model_kwargs) | |
llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama3-70b-8192", temperature=0.2) | |
vectordb = Chroma(persist_directory='updated_CSPCDB2', embedding_function=embedding) | |
# Create chain | |
chain = RetrievalQA.from_chain_type(llm=llm, | |
chain_type="stuff", | |
retriever=vectordb.as_retriever(k=5), | |
return_source_documents=True) | |
return chain | |
# Streamlit app layout | |
st.set_page_config( | |
page_title="CSPC Citizens Charter Conversational Agent", | |
page_icon="cspclogo.png" | |
) | |
with st.sidebar: | |
st.title('CSPCean Conversational Agent') | |
st.subheader('Ask anything CSPC Related here!') | |
st.markdown('''**About CSPC:** | |
History, Core Values, Mission and Vision''') | |
st.markdown('''**Admission & Graduation:** | |
Apply, Requirements, Process, Graduation''') | |
st.markdown('''**Student Services:** | |
Scholarships, Orgs, Facilities''') | |
st.markdown('''**Academics:** | |
Degrees, Courses, Faculty''') | |
st.markdown('''**Officials:** | |
President, VPs, Deans, Admin''') | |
st.markdown(''' | |
Access the resources here: | |
- [CSPC Citizen’s Charter](https://cspc.edu.ph/governance/citizens-charter/) | |
- [About CSPC](https://cspc.edu.ph/about/) | |
- [College Officials](https://cspc.edu.ph/college-officials/) | |
''') | |
st.markdown('Team XceptionNet') | |
# Store LLM generated responses | |
if "messages" not in st.session_state: | |
st.session_state.chain = init_chain() | |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}] | |
st.session_state.query_counter = 0 # Track the number of user queries | |
st.session_state.conversation_history = "" # Keep track of history for the LLM | |
def generate_response(prompt_input): | |
try: | |
# Retrieve vector database context using ONLY the current user input | |
retriever = st.session_state.chain.retriever | |
relevant_context = retriever.get_relevant_documents(prompt_input) # Retrieve context only for the current prompt | |
# Format the input for the chain with the retrieved context | |
formatted_input = ( | |
f"Context:\n" | |
f"{' '.join([doc.page_content for doc in relevant_context])}\n\n" | |
f"Conversation:\n{st.session_state.conversation_history}user: {prompt_input}\n" | |
) | |
# Invoke the RetrievalQA chain directly with the formatted input | |
res = st.session_state.chain.invoke({"query": formatted_input}) | |
# Process the response text | |
result_text = res['result'] | |
# Clean up prefixing phrases and capitalize the first letter | |
if result_text.startswith('According to the provided context, '): | |
result_text = result_text[35:].strip() | |
elif result_text.startswith('Based on the provided context, '): | |
result_text = result_text[31:].strip() | |
elif result_text.startswith('According to the provided text, '): | |
result_text = result_text[34:].strip() | |
elif result_text.startswith('According to the context, '): | |
result_text = result_text[26:].strip() | |
# Ensure the first letter is uppercase | |
result_text = result_text[0].upper() + result_text[1:] if result_text else result_text | |
# Extract and format sources (if available) | |
sources = [] | |
for doc in relevant_context: | |
source_path = doc.metadata.get('source', '') | |
formatted_source = source_path[122:-4] if source_path else "Unknown source" | |
sources.append(formatted_source) | |
# Remove duplicates and combine into a single string | |
unique_sources = list(set(sources)) | |
source_list = ", ".join(unique_sources) | |
# # Combine response text with sources | |
# result_text += f"\n\n**Sources:** {source_list}" if source_list else "\n\n**Sources:** None" | |
# Update conversation history | |
st.session_state.conversation_history += f"user: {prompt_input}\nassistant: {result_text}\n" | |
return result_text | |
except Exception as e: | |
# Handle rate limit or other errors gracefully | |
if "rate_limit_exceeded" in str(e).lower(): | |
return "⚠️ Rate limit exceeded. Please clear the chat history and try again." | |
else: | |
return f"❌ An error occurred: {str(e)}" | |
# Display chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
# User-provided prompt for input box | |
if prompt := st.chat_input(placeholder="Ask a question..."): | |
# Increment query counter | |
st.session_state.query_counter += 1 | |
# Append user query to session state | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.write(prompt) | |
# Generate and display placeholder for assistant response | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() # Placeholder for response while it's being generated | |
with st.spinner("Generating response..."): | |
# Use conversation history when generating response | |
response = generate_response(prompt) | |
message_placeholder.markdown(response) # Replace placeholder with actual response | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
# Check if query counter has reached the limit | |
if st.session_state.query_counter >= 10: | |
st.sidebar.warning("Conversation context has been reset after 10 queries.") | |
st.session_state.query_counter = 0 # Reset the counter | |
st.session_state.conversation_history = "" # Clear conversation history for the LLM | |
# Clear chat history function | |
def clear_chat_history(): | |
# Clear chat messages (reset the assistant greeting) | |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}] | |
# Reinitialize the chain to clear any stored history (ensures it forgets previous user inputs) | |
st.session_state.chain = init_chain() | |
# Clear the query counter and conversation history | |
st.session_state.query_counter = 0 | |
st.session_state.conversation_history = "" | |
st.sidebar.button('Clear Chat History', on_click=clear_chat_history) |