Niooooor's picture
Update app1.py
43942e2 verified
raw
history blame
6.01 kB
import streamlit as st
import os
import requests
from dotenv import load_dotenv # Only needed if using a .env file
# Langchain and HuggingFace
from langchain.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_groq import ChatGroq
from langchain.chains import RetrievalQA
# Load the .env file (if using it)
load_dotenv()
groq_api_key = os.getenv("GROQ_API_KEY")
# Load embeddings, model, and vector store
@st.cache_resource # Singleton, prevent multiple initializations
def init_chain():
mojdel_kwargs = {'trust_remote_code': True}
embedding = HuggingFaceEmbeddings(model_name='nomic-ai/nomic-embed-text-v1.5', model_kwargs=model_kwargs)
llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama3-70b-8192", temperature=0.2)
vectordb = Chroma(persist_directory='updated_CSPCDB2', embedding_function=embedding)
# Create chain
chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=vectordb.as_retriever(k=5),
return_source_documents=True)
return chain
# Streamlit app layout
st.set_page_config(
page_title="CSPC Citizens Charter Conversational Agent",
page_icon="cspclogo.png"
)
with st.sidebar:
st.title('CSPCean Conversational Agent')
st.subheader('Ask anything CSPC Related here!')
st.markdown('''**About CSPC:**
History, Core Values, Mission and Vision''')
st.markdown('''**Admission & Graduation:**
Apply, Requirements, Process, Graduation''')
st.markdown('''**Student Services:**
Scholarships, Orgs, Facilities''')
st.markdown('''**Academics:**
Degrees, Courses, Faculty''')
st.markdown('''**Officials:**
President, VPs, Deans, Admin''')
st.markdown('''
Access the resources here:
- [CSPC Citizen’s Charter](https://cspc.edu.ph/governance/citizens-charter/)
- [About CSPC](https://cspc.edu.ph/about/)
- [College Officials](https://cspc.edu.ph/college-officials/)
''')
st.markdown('Team XceptionNet')
# Store LLM generated responses
if "messages" not in st.session_state:
st.session_state.chain = init_chain()
st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}]
# Function for generating response using the last three conversations
def generate_response(prompt_input):
# Initialize result
result = ''
# Prepare conversation history: get the last 3 user and assistant messages
conversation_history = ""
recent_messages = st.session_state.messages[-3:] # Last 3 user and assistant exchanges (each exchange is 2 messages)
for message in recent_messages:
conversation_history += f"{message['role']}: {message['content']}\n"
# Append the current user prompt to the conversation history
conversation_history += f"user: {prompt_input}\n"
# Invoke chain with the truncated conversation history
res = st.session_state.chain.invoke(conversation_history)
# Process response (as in the original code)
if res['result'].startswith('According to the provided context, '):
res['result'] = res['result'][35:]
res['result'] = res['result'][0].upper() + res['result'][1:]
elif res['result'].startswith('Based on the provided context, '):
res['result'] = res['result'][31:]
res['result'] = res['result'][0].upper() + res['result'][1:]
elif res['result'].startswith('According to the provided text, '):
res['result'] = res['result'][34:]
res['result'] = res['result'][0].upper() + res['result'][1:]
elif res['result'].startswith('According to the context, '):
res['result'] = res['result'][26:]
res['result'] = res['result'][0].upper() + res['result'][1:]
# result += res['result']
# # Process sources
# result += '\n\nSources: '
# sources = []
# for source in res["source_documents"]:
# sources.append(source.metadata['source'][122:-4]) # Adjust as per your source format
# sources = list(set(sources)) # Remove duplicates
# source_list = ", ".join(sources)
# result += source_list
# return result, res['result'], source_list
# return result, res['result']
return res['result']
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# User-provided prompt for input box
if prompt := st.chat_input(placeholder="Ask a question..."):
# Append user query to session state
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate and display placeholder for assistant response
with st.chat_message("assistant"):
message_placeholder = st.empty() # Placeholder for response while it's being generated
with st.spinner("Generating response..."):
# Use conversation history when generating response
response = generate_response(prompt)
message_placeholder.markdown(response) # Replace placeholder with actual response
st.session_state.messages.append({"role": "assistant", "content": response})
# Clear chat history function
def clear_chat_history():
# Clear chat messages (reset the assistant greeting)
st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}]
# Reinitialize the chain to clear any stored history (ensures it forgets previous user inputs)
st.session_state.chain = init_chain()
# Clear any additional session state that might be remembering user inquiries
if "recent_user_messages" in st.session_state:
del st.session_state["recent_user_messages"] # Clear remembered user inputs
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)