File size: 10,000 Bytes
9bc4ec7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import streamlit as st
import os
import requests
from dotenv import load_dotenv # Only needed if using a .env file
# Langchain and HuggingFace
from langchain.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_groq import ChatGroq
from langchain.chains import RetrievalQA
# Load the .env file (if using it)
load_dotenv()
groq_api_key = os.getenv("GROQ_API_KEY")
# Load embeddings, model, and vector store
@st.cache_resource # Singleton, prevent multiple initializations
def init_chain():
model_kwargs = {'trust_remote_code': True}
embedding = HuggingFaceEmbeddings(model_name='nomic-ai/nomic-embed-text-v1.5', model_kwargs=model_kwargs)
llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama3-70b-8192", temperature=0.2)
vectordb = Chroma(persist_directory='updated_CSPCDB2', embedding_function=embedding)
# Create chain
chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=vectordb.as_retriever(k=5),
return_source_documents=True)
return chain
# Streamlit app layout
st.set_page_config(
page_title="CSPC Citizens Charter Conversational Agent",
page_icon="cspclogo.png"
)
with st.sidebar:
st.title('CSPCean Conversational Agent')
st.subheader('Ask anything CSPC Related here!')
st.markdown('''**About CSPC:**
History, Core Values, Mission and Vision''')
st.markdown('''**Admission & Graduation:**
Apply, Requirements, Process, Graduation''')
st.markdown('''**Student Services:**
Scholarships, Orgs, Facilities''')
st.markdown('''**Academics:**
Degrees, Courses, Faculty''')
st.markdown('''**Officials:**
President, VPs, Deans, Admin''')
st.markdown('''
Access the resources here:
- [CSPC Citizen’s Charter](https://cspc.edu.ph/governance/citizens-charter/)
- [About CSPC](https://cspc.edu.ph/about/)
- [College Officials](https://cspc.edu.ph/college-officials/)
''')
st.markdown('Team XceptionNet')
# Store LLM generated responses
if "messages" not in st.session_state:
st.session_state.chain = init_chain()
st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}]
# Function for generating response using the last three conversations
def generate_response(prompt_input):
# Initialize result
result = ''
# Prepare conversation history: get the last 3 user and assistant messages
conversation_history = ""
recent_messages = st.session_state.messages[-3:] # Last 3 user and assistant exchanges (each exchange is 2 messages)
for message in recent_messages:
conversation_history += f"{message['role']}: {message['content']}\n"
# Append the current user prompt to the conversation history
conversation_history += f"user: {prompt_input}\n"
# Invoke chain with the truncated conversation history
res = st.session_state.chain.invoke(conversation_history)
# Process response (as in the original code)
if res['result'].startswith('According to the provided context, '):
res['result'] = res['result'][35:]
res['result'] = res['result'][0].upper() + res['result'][1:]
elif res['result'].startswith('Based on the provided context, '):
res['result'] = res['result'][31:]
res['result'] = res['result'][0].upper() + res['result'][1:]
elif res['result'].startswith('According to the provided text, '):
res['result'] = res['result'][34:]
res['result'] = res['result'][0].upper() + res['result'][1:]
elif res['result'].startswith('According to the context, '):
res['result'] = res['result'][26:]
res['result'] = res['result'][0].upper() + res['result'][1:]
# result += res['result']
# # Process sources
# result += '\n\nSources: '
# sources = []
# for source in res["source_documents"]:
# sources.append(source.metadata['source'][122:-4]) # Adjust as per your source format
# sources = list(set(sources)) # Remove duplicates
# source_list = ", ".join(sources)
# result += source_list
# return result, res['result'], source_list
# return result, res['result']
# def generate_response(prompt_input):
# # Prepare conversation history: get the last 3 user and assistant messages
# conversation_history = ""
# recent_messages = st.session_state.messages[-3:] # Last 3 user and assistant exchanges
# for message in recent_messages:
# conversation_history += f"{message['role']}: {message['content']}\n"
# # Append the current user prompt to the conversation history
# conversation_history += f"user: {prompt_input}\n"
# # Invoke chain with the truncated conversation history
# res = st.session_state.chain.invoke(conversation_history)
# # Process response
# result_text = res['result']
# if result_text.startswith('According to the provided context, '):
# result_text = result_text[35:].capitalize()
# elif result_text.startswith('Based on the provided context, '):
# result_text = result_text[31:].capitalize()
# elif result_text.startswith('According to the provided text, '):
# result_text = result_text[34:].capitalize()
# elif result_text.startswith('According to the context, '):
# result_text = result_text[26:].capitalize()
# # Extract and format sources
# sources = []
# for source in res.get("source_documents", []): # Safeguard with .get() in case sources are missing
# source_path = source.metadata.get('source', '')
# formatted_source = source_path[122:-4] if source_path else "Unknown source"
# sources.append(formatted_source)
# # Remove duplicates and combine into a single string
# unique_sources = list(set(sources))
# source_list = ", ".join(unique_sources)
# # Combine response text with sources
# result_text += f"\n\n**Sources:** {source_list}" if source_list else "\n\n**Sources:** None"
# return result_text
# return res['result']
def generate_response(prompt_input):
# Retrieve vector database context using ONLY the current user input
retriever = st.session_state.chain.retriever
relevant_context = retriever.get_relevant_documents(prompt_input) # Retrieve context only for the current prompt
# Prepare full conversation history for the LLM
conversation_history = ""
for message in st.session_state.messages:
conversation_history += f"{message['role']}: {message['content']}\n"
# Append the current user prompt to the conversation history
conversation_history += f"user: {prompt_input}\n"
# Format the input for the chain with the retrieved context
formatted_input = (
f"Context:\n"
f"{' '.join([doc.page_content for doc in relevant_context])}\n\n"
f"Conversation:\n{conversation_history}"
)
# Invoke the RetrievalQA chain directly with the formatted input
res = st.session_state.chain.invoke({"query": formatted_input})
# Process the response text
result_text = res['result']
if result_text.startswith('According to the provided context, '):
result_text = result_text[35:].capitalize()
elif result_text.startswith('Based on the provided context, '):
result_text = result_text[31:].capitalize()
elif result_text.startswith('According to the provided text, '):
result_text = result_text[34:].capitalize()
elif result_text.startswith('According to the context, '):
result_text = result_text[26:].capitalize()
# Extract and format sources (if available)
sources = []
for doc in relevant_context:
source_path = doc.metadata.get('source', '')
formatted_source = source_path[122:-4] if source_path else "Unknown source"
sources.append(formatted_source)
# Remove duplicates and combine into a single string
unique_sources = list(set(sources))
source_list = ", ".join(unique_sources)
# Combine response text with sources
result_text += f"\n\n**Sources:** {source_list}" if source_list else "\n\n**Sources:** None"
return result_text
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# User-provided prompt for input box
if prompt := st.chat_input(placeholder="Ask a question..."):
# Append user query to session state
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate and display placeholder for assistant response
with st.chat_message("assistant"):
message_placeholder = st.empty() # Placeholder for response while it's being generated
with st.spinner("Generating response..."):
# Use conversation history when generating response
response = generate_response(prompt)
message_placeholder.markdown(response) # Replace placeholder with actual response
st.session_state.messages.append({"role": "assistant", "content": response})
# Clear chat history function
def clear_chat_history():
# Clear chat messages (reset the assistant greeting)
st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}]
# Reinitialize the chain to clear any stored history (ensures it forgets previous user inputs)
st.session_state.chain = init_chain()
# Clear any additional session state that might be remembering user inquiries
if "recent_user_messages" in st.session_state:
del st.session_state["recent_user_messages"] # Clear remembered user inputs
st.sidebar.button('Clear Chat History', on_click=clear_chat_history) |