File size: 8,212 Bytes
f980dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import streamlit as st
import cv2
import numpy as np
import os
import json
import joblib
import pickle
from typing import Dict, Any
from sentence_transformers import SentenceTransformer, CrossEncoder
from langdetect import detect
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input as mobilenet_preprocess
from vit_keras.layers import ClassToken, AddPositionEmbs, TransformerBlock

# ================== CACHING ==================
@st.cache_resource
def load_all_models():
    cnn_model = load_model("Main_py/banana_cnn_model.keras", compile=False)
    vit_model = load_model(
        "Main_py/banana_vit_model.keras", compile=False,
        custom_objects={
            'ClassToken': ClassToken,
            'AddPositionEmbs': AddPositionEmbs,
            'TransformerBlock': TransformerBlock
        }
    )
    cnn_feat_ext = Model(inputs=cnn_model.input, outputs=cnn_model.get_layer(index=-4).output)
    vit_feat_ext = Model(inputs=vit_model.input, outputs=vit_model.get_layer(index=-4).output)
    return cnn_model, vit_model, cnn_feat_ext, vit_feat_ext

@st.cache_resource
def load_all_assets():
    scaler = joblib.load("Main_py/feature_scaler.pkl")
    mlp_model = joblib.load("Main_py/lightgbm_model.pkl")
    outlier_detector = joblib.load("Main_py/isolation_forest.pkl")
    with open("Main_py/label_encoder.pkl", "rb") as f:
        le = pickle.load(f)
    with open("Main_py/banana_disease_knowledge_base_DL.json", "r", encoding="utf-8") as f:
        kb_data_image = {entry["Disease"]: entry for entry in json.load(f)}
    with open("Main_py/banana_disease_knowledge_base.json", "r", encoding="utf-8") as f:
        kb_data_text = json.load(f)
    return scaler, mlp_model, le, kb_data_image, kb_data_text, outlier_detector

@st.cache_resource
def load_nlp_models():
    embedder = SentenceTransformer('sentence-transformers/paraphrase-xlm-r-multilingual-v1')
    cross_encoder = CrossEncoder('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1')
    return embedder, cross_encoder

# ================== IMAGE DIAGNOSIS ==================
def identify_disease_from_image(image_path):
    try:
        img = cv2.imread(image_path)
        if img is None:
            raise ValueError("Image not loaded.")
        img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img_resized = cv2.resize(img_rgb, (224, 224))

        cnn_input = np.expand_dims(img_resized / 255.0, axis=0)
        vit_input = np.expand_dims(mobilenet_preprocess(img_resized), axis=0)

        cnn_feat = cnn_feature_extractor.predict(cnn_input, verbose=0)
        vit_feat = vit_feature_extractor.predict(vit_input, verbose=0)
        combined_feat = np.concatenate([cnn_feat, vit_feat], axis=1)
        combined_scaled = scaler.transform(combined_feat)

        y_pred = mlp_model.predict(combined_scaled)
        predicted_label = le.inverse_transform(y_pred)[0]

        confidence = None
        try:
            probs = mlp_model.predict_proba(combined_scaled)
            confidence = np.max(probs)
        except:
            probs = None

        st.image(img_rgb, caption="Uploaded Image", use_column_width=True)
        st.write(f"**Predicted Disease**: {predicted_label} ({confidence:.2f} confidence)" if confidence else predicted_label)

        result = {
            "predicted_disease": predicted_label,
            "confidence": confidence,
            "info_available": False,
            "all_probabilities": probs[0].tolist() if probs is not None else None
        }

        normalized_pred = predicted_label.lower().replace(" ", "")
        for disease in kb_data_image:
            if normalized_pred in disease.lower().replace(" ", ""):
                matched = kb_data_image[disease]
                result["info_available"] = True
                st.subheader("Image-Based Prediction (Marathi)")
                st.write(f"**रोग**: {matched['Local_Name']['mr']}")
                st.write(f"**लक्षणे**: {matched['Symptoms_MR']}")
                st.write(f"**कारण**: {matched['Cause_MR']}")
                st.write(f"**कीटकनाशक शिफारस**: {matched['Pesticide_Recommendation_MR']}")
                st.write(f"**कीटकनाशक**: {matched['Pesticide']}")
                st.write(f"**परजीवी**: {matched['Pathogen']}")
                st.write(f"**व्यवस्थापन उपाय**: {matched['Management_Practices_MR']}")
                break
        else:
            st.warning("❌ Disease not found in knowledge base.")
        return result

    except Exception as e:
        st.error(f"Error: {e}")
        return {"error": str(e), "predicted_disease": None}

# ================== TEXT DIAGNOSIS ==================
def detect_language(query: str) -> str:
    try:
        lang = detect(query)
        return lang if lang in ["mr", "hi"] else "en"
    except:
        return "en"

def predict_disease(query: str) -> Dict[str, Any]:
    lang = detect_language(query)
    query_emb = embedder.encode([query], normalize_embeddings=True)
    symptom_key = f"Symptoms_{lang.upper()}" if lang != "en" else "Symptoms"
    pairs = [[query, entry[symptom_key]] for entry in kb_data_text]
    scores = cross_encoder.predict(pairs)
    best_idx = np.argmax(scores)

    if scores[best_idx] < 0.2:
        return {
            "message": {
                "mr": "हा रोग आमच्या डेटाबेसमध्ये नाही.",
                "hi": "यह रोग हमारे डेटाबेस में नहीं है।",
                "en": "This disease is not in our database."
            }[lang]
        }

    entry = kb_data_text[best_idx]
    return {
        "Crop": entry["Crop"],
        "Disease": entry["Local_Name"][lang],
        "Symptoms": entry[symptom_key],
        "Cause": entry.get(f"Cause_{lang.upper()}", entry["Cause"]),
        "Pesticide_Recommendation": entry.get(f"Pesticide_Recommendation_{lang.upper()}", entry["Pesticide_Recommendation"]),
        "Pesticide": entry["Pesticide"],
        "Pathogen": entry["Pathogen"],
        "Management_Practices": entry.get(f"Management_{lang.upper()}", entry["Management_Practices"])
    }

# ================== UI ==================
st.set_page_config(page_title="Banana Disease Detection", layout="centered")

st.title("🍌 Banana Disease Detection App")
st.write("Detect banana crop diseases using image or symptom query in Marathi, Hindi, or English.")

option = st.radio("Choose input method:", ("Image Only", "Text Only", "Both"))

# Load all models & assets once
cnn_model, vit_model, cnn_feature_extractor, vit_feature_extractor = load_all_models()
scaler, mlp_model, le, kb_data_image, kb_data_text, outlier_detector = load_all_assets()
embedder, cross_encoder = load_nlp_models()

# Image input
if option in ["Image Only", "Both"]:
    st.subheader("📷 Upload Banana Leaf Image")
    uploaded_image = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
    if uploaded_image:
        temp_path = "temp_image.jpg"
        with open(temp_path, "wb") as f:
            f.write(uploaded_image.getbuffer())
        identify_disease_from_image(temp_path)
        os.remove(temp_path)

# Text input
if option in ["Text Only", "Both"]:
    st.subheader("📝 Enter Symptoms")
    symptoms = st.text_area("Describe the symptoms (Marathi, Hindi, or English):")
    if symptoms and st.button("Predict Disease from Text"):
        result = predict_disease(symptoms)
        if "message" in result:
            st.warning(result["message"])
        else:
            st.subheader("Text-Based Prediction")
            st.write(f"**Crop**: {result['Crop']}")
            st.write(f"**Disease**: {result['Disease']}")
            st.write(f"**Symptoms**: {result['Symptoms']}")
            st.write(f"**Cause**: {result['Cause']}")
            st.write(f"**Pesticide Recommendation**: {result['Pesticide_Recommendation']}")
            st.write(f"**Pesticide**: {result['Pesticide']}")
            st.write(f"**Pathogen**: {result['Pathogen']}")
            st.write(f"**Management Practices**: {result['Management_Practices']}")