Spaces:
Running
Running
File size: 8,212 Bytes
f980dad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import streamlit as st
import cv2
import numpy as np
import os
import json
import joblib
import pickle
from typing import Dict, Any
from sentence_transformers import SentenceTransformer, CrossEncoder
from langdetect import detect
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input as mobilenet_preprocess
from vit_keras.layers import ClassToken, AddPositionEmbs, TransformerBlock
# ================== CACHING ==================
@st.cache_resource
def load_all_models():
cnn_model = load_model("Main_py/banana_cnn_model.keras", compile=False)
vit_model = load_model(
"Main_py/banana_vit_model.keras", compile=False,
custom_objects={
'ClassToken': ClassToken,
'AddPositionEmbs': AddPositionEmbs,
'TransformerBlock': TransformerBlock
}
)
cnn_feat_ext = Model(inputs=cnn_model.input, outputs=cnn_model.get_layer(index=-4).output)
vit_feat_ext = Model(inputs=vit_model.input, outputs=vit_model.get_layer(index=-4).output)
return cnn_model, vit_model, cnn_feat_ext, vit_feat_ext
@st.cache_resource
def load_all_assets():
scaler = joblib.load("Main_py/feature_scaler.pkl")
mlp_model = joblib.load("Main_py/lightgbm_model.pkl")
outlier_detector = joblib.load("Main_py/isolation_forest.pkl")
with open("Main_py/label_encoder.pkl", "rb") as f:
le = pickle.load(f)
with open("Main_py/banana_disease_knowledge_base_DL.json", "r", encoding="utf-8") as f:
kb_data_image = {entry["Disease"]: entry for entry in json.load(f)}
with open("Main_py/banana_disease_knowledge_base.json", "r", encoding="utf-8") as f:
kb_data_text = json.load(f)
return scaler, mlp_model, le, kb_data_image, kb_data_text, outlier_detector
@st.cache_resource
def load_nlp_models():
embedder = SentenceTransformer('sentence-transformers/paraphrase-xlm-r-multilingual-v1')
cross_encoder = CrossEncoder('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1')
return embedder, cross_encoder
# ================== IMAGE DIAGNOSIS ==================
def identify_disease_from_image(image_path):
try:
img = cv2.imread(image_path)
if img is None:
raise ValueError("Image not loaded.")
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_resized = cv2.resize(img_rgb, (224, 224))
cnn_input = np.expand_dims(img_resized / 255.0, axis=0)
vit_input = np.expand_dims(mobilenet_preprocess(img_resized), axis=0)
cnn_feat = cnn_feature_extractor.predict(cnn_input, verbose=0)
vit_feat = vit_feature_extractor.predict(vit_input, verbose=0)
combined_feat = np.concatenate([cnn_feat, vit_feat], axis=1)
combined_scaled = scaler.transform(combined_feat)
y_pred = mlp_model.predict(combined_scaled)
predicted_label = le.inverse_transform(y_pred)[0]
confidence = None
try:
probs = mlp_model.predict_proba(combined_scaled)
confidence = np.max(probs)
except:
probs = None
st.image(img_rgb, caption="Uploaded Image", use_column_width=True)
st.write(f"**Predicted Disease**: {predicted_label} ({confidence:.2f} confidence)" if confidence else predicted_label)
result = {
"predicted_disease": predicted_label,
"confidence": confidence,
"info_available": False,
"all_probabilities": probs[0].tolist() if probs is not None else None
}
normalized_pred = predicted_label.lower().replace(" ", "")
for disease in kb_data_image:
if normalized_pred in disease.lower().replace(" ", ""):
matched = kb_data_image[disease]
result["info_available"] = True
st.subheader("Image-Based Prediction (Marathi)")
st.write(f"**रोग**: {matched['Local_Name']['mr']}")
st.write(f"**लक्षणे**: {matched['Symptoms_MR']}")
st.write(f"**कारण**: {matched['Cause_MR']}")
st.write(f"**कीटकनाशक शिफारस**: {matched['Pesticide_Recommendation_MR']}")
st.write(f"**कीटकनाशक**: {matched['Pesticide']}")
st.write(f"**परजीवी**: {matched['Pathogen']}")
st.write(f"**व्यवस्थापन उपाय**: {matched['Management_Practices_MR']}")
break
else:
st.warning("❌ Disease not found in knowledge base.")
return result
except Exception as e:
st.error(f"Error: {e}")
return {"error": str(e), "predicted_disease": None}
# ================== TEXT DIAGNOSIS ==================
def detect_language(query: str) -> str:
try:
lang = detect(query)
return lang if lang in ["mr", "hi"] else "en"
except:
return "en"
def predict_disease(query: str) -> Dict[str, Any]:
lang = detect_language(query)
query_emb = embedder.encode([query], normalize_embeddings=True)
symptom_key = f"Symptoms_{lang.upper()}" if lang != "en" else "Symptoms"
pairs = [[query, entry[symptom_key]] for entry in kb_data_text]
scores = cross_encoder.predict(pairs)
best_idx = np.argmax(scores)
if scores[best_idx] < 0.2:
return {
"message": {
"mr": "हा रोग आमच्या डेटाबेसमध्ये नाही.",
"hi": "यह रोग हमारे डेटाबेस में नहीं है।",
"en": "This disease is not in our database."
}[lang]
}
entry = kb_data_text[best_idx]
return {
"Crop": entry["Crop"],
"Disease": entry["Local_Name"][lang],
"Symptoms": entry[symptom_key],
"Cause": entry.get(f"Cause_{lang.upper()}", entry["Cause"]),
"Pesticide_Recommendation": entry.get(f"Pesticide_Recommendation_{lang.upper()}", entry["Pesticide_Recommendation"]),
"Pesticide": entry["Pesticide"],
"Pathogen": entry["Pathogen"],
"Management_Practices": entry.get(f"Management_{lang.upper()}", entry["Management_Practices"])
}
# ================== UI ==================
st.set_page_config(page_title="Banana Disease Detection", layout="centered")
st.title("🍌 Banana Disease Detection App")
st.write("Detect banana crop diseases using image or symptom query in Marathi, Hindi, or English.")
option = st.radio("Choose input method:", ("Image Only", "Text Only", "Both"))
# Load all models & assets once
cnn_model, vit_model, cnn_feature_extractor, vit_feature_extractor = load_all_models()
scaler, mlp_model, le, kb_data_image, kb_data_text, outlier_detector = load_all_assets()
embedder, cross_encoder = load_nlp_models()
# Image input
if option in ["Image Only", "Both"]:
st.subheader("📷 Upload Banana Leaf Image")
uploaded_image = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
if uploaded_image:
temp_path = "temp_image.jpg"
with open(temp_path, "wb") as f:
f.write(uploaded_image.getbuffer())
identify_disease_from_image(temp_path)
os.remove(temp_path)
# Text input
if option in ["Text Only", "Both"]:
st.subheader("📝 Enter Symptoms")
symptoms = st.text_area("Describe the symptoms (Marathi, Hindi, or English):")
if symptoms and st.button("Predict Disease from Text"):
result = predict_disease(symptoms)
if "message" in result:
st.warning(result["message"])
else:
st.subheader("Text-Based Prediction")
st.write(f"**Crop**: {result['Crop']}")
st.write(f"**Disease**: {result['Disease']}")
st.write(f"**Symptoms**: {result['Symptoms']}")
st.write(f"**Cause**: {result['Cause']}")
st.write(f"**Pesticide Recommendation**: {result['Pesticide_Recommendation']}")
st.write(f"**Pesticide**: {result['Pesticide']}")
st.write(f"**Pathogen**: {result['Pathogen']}")
st.write(f"**Management Practices**: {result['Management_Practices']}")
|