Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,14 +2,14 @@
|
|
| 2 |
import os
|
| 3 |
import random
|
| 4 |
import numpy as np
|
| 5 |
-
|
| 6 |
-
import torch
|
| 7 |
import spaces
|
| 8 |
import gradio as gr
|
| 9 |
|
| 10 |
-
|
| 11 |
import google.generativeai as genai
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
MARKDOWN = """
|
|
@@ -18,6 +18,7 @@ Thanks to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for
|
|
| 18 |
and a big thanks to [Gothos](https://github.com/Gothos) for taking it to the next level by enabling inpainting with the FLUX.
|
| 19 |
"""
|
| 20 |
|
|
|
|
| 21 |
#Gemini Setup
|
| 22 |
genai.configure(api_key = os.environ['Gemini_API'])
|
| 23 |
gemini_flash = genai.GenerativeModel(model_name='gemini-1.5-flash-002')
|
|
@@ -43,17 +44,196 @@ def gemini_predict(prompt):
|
|
| 43 |
Query : {prompt}
|
| 44 |
"""
|
| 45 |
response = gemini_flash.generate_content(system_message)
|
| 46 |
-
return(str(response.text)[:-
|
|
|
|
| 47 |
|
| 48 |
|
| 49 |
MAX_SEED = np.iinfo(np.int32).max
|
| 50 |
DEVICE = "cuda" #if torch.cuda.is_available() else "cpu"
|
| 51 |
|
| 52 |
-
#Setting up Flux (Schnell) Inpainting
|
| 53 |
-
#inpaint_pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
#Uncomment the following 4 lines, if you want LoRA Realism weights added to the pipeline
|
| 59 |
# inpaint_pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better")
|
|
@@ -64,9 +244,10 @@ inpaint_pipe = FluxInpaintPipeline.from_pretrained(bfl_repo, transformer=transfo
|
|
| 64 |
#torch.cuda.empty_cache()
|
| 65 |
|
| 66 |
@spaces.GPU()
|
| 67 |
-
def process(input_image_editor,
|
| 68 |
if not input_text:
|
| 69 |
raise gr.Error("Please enter a text prompt.")
|
|
|
|
| 70 |
item = gemini_predict(input_text)
|
| 71 |
#print(item)
|
| 72 |
|
|
@@ -77,15 +258,23 @@ def process(input_image_editor, mask_image, input_text, strength, seed, randomiz
|
|
| 77 |
|
| 78 |
if randomize_seed:
|
| 79 |
seed = random.randint(0, MAX_SEED)
|
| 80 |
-
|
| 81 |
-
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 82 |
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
strength=strength, num_inference_steps=num_inference_steps, generator=generator,
|
| 85 |
guidance_scale=guidance_scale).images[0]
|
| 86 |
|
| 87 |
|
| 88 |
-
return result,
|
| 89 |
|
| 90 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
| 91 |
gr.Markdown(MARKDOWN)
|
|
@@ -109,14 +298,14 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
| 109 |
strength_slider = gr.Slider(
|
| 110 |
minimum=0.0,
|
| 111 |
maximum=1.0,
|
| 112 |
-
value=0.
|
| 113 |
step=0.01,
|
| 114 |
label="Strength"
|
| 115 |
)
|
| 116 |
num_inference_steps = gr.Slider(
|
| 117 |
minimum=1,
|
| 118 |
maximum=100,
|
| 119 |
-
value=
|
| 120 |
step=1,
|
| 121 |
label="Number of inference steps"
|
| 122 |
)
|
|
@@ -125,16 +314,38 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
| 125 |
minimum=1,
|
| 126 |
maximum=15,
|
| 127 |
step=0.1,
|
| 128 |
-
value=
|
| 129 |
)
|
| 130 |
seed_number = gr.Number(
|
| 131 |
label="Seed",
|
| 132 |
-
value=
|
| 133 |
precision=0
|
| 134 |
)
|
| 135 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=
|
| 136 |
-
with gr.Accordion("
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
submit_button_component = gr.Button(value='Inpaint', variant='primary')
|
| 139 |
with gr.Column(scale=1):
|
| 140 |
output_image_component = gr.Image(type='pil', image_mode='RGB', label='Generated Image')
|
|
@@ -145,7 +356,7 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
| 145 |
|
| 146 |
submit_button_component.click(
|
| 147 |
fn=process,
|
| 148 |
-
inputs=[input_image_component,
|
| 149 |
outputs=[output_image_component, output_mask_component, output_seed, identified_item]
|
| 150 |
)
|
| 151 |
|
|
|
|
| 2 |
import os
|
| 3 |
import random
|
| 4 |
import numpy as np
|
| 5 |
+
import cv2
|
|
|
|
| 6 |
import spaces
|
| 7 |
import gradio as gr
|
| 8 |
|
| 9 |
+
import torch
|
| 10 |
import google.generativeai as genai
|
| 11 |
+
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
|
| 12 |
+
from diffusers import FluxTransformer2DModel, FluxInpaintPipeline
|
| 13 |
|
| 14 |
|
| 15 |
MARKDOWN = """
|
|
|
|
| 18 |
and a big thanks to [Gothos](https://github.com/Gothos) for taking it to the next level by enabling inpainting with the FLUX.
|
| 19 |
"""
|
| 20 |
|
| 21 |
+
|
| 22 |
#Gemini Setup
|
| 23 |
genai.configure(api_key = os.environ['Gemini_API'])
|
| 24 |
gemini_flash = genai.GenerativeModel(model_name='gemini-1.5-flash-002')
|
|
|
|
| 44 |
Query : {prompt}
|
| 45 |
"""
|
| 46 |
response = gemini_flash.generate_content(system_message)
|
| 47 |
+
return(str(response.text)[:-1])
|
| 48 |
+
|
| 49 |
|
| 50 |
|
| 51 |
MAX_SEED = np.iinfo(np.int32).max
|
| 52 |
DEVICE = "cuda" #if torch.cuda.is_available() else "cpu"
|
| 53 |
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
###GroundingDINO & SAM Setup
|
| 56 |
+
|
| 57 |
+
#To store DINO results
|
| 58 |
+
@dataclass
|
| 59 |
+
class BoundingBox:
|
| 60 |
+
xmin: int
|
| 61 |
+
ymin: int
|
| 62 |
+
xmax: int
|
| 63 |
+
ymax: int
|
| 64 |
+
|
| 65 |
+
@property
|
| 66 |
+
def xyxy(self) -> List[float]:
|
| 67 |
+
return [self.xmin, self.ymin, self.xmax, self.ymax]
|
| 68 |
+
|
| 69 |
+
@dataclass
|
| 70 |
+
class DetectionResult:
|
| 71 |
+
score: float
|
| 72 |
+
label: str
|
| 73 |
+
box: BoundingBox
|
| 74 |
+
mask: Optional[np.array] = None
|
| 75 |
+
|
| 76 |
+
@classmethod
|
| 77 |
+
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
|
| 78 |
+
return cls(score=detection_dict['score'],
|
| 79 |
+
label=detection_dict['label'],
|
| 80 |
+
box=BoundingBox(xmin=detection_dict['box']['xmin'],
|
| 81 |
+
ymin=detection_dict['box']['ymin'],
|
| 82 |
+
xmax=detection_dict['box']['xmax'],
|
| 83 |
+
ymax=detection_dict['box']['ymax']))
|
| 84 |
+
|
| 85 |
+
#Utility Functions for Mask Generation
|
| 86 |
+
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
|
| 87 |
+
# Find contours in the binary mask
|
| 88 |
+
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 89 |
+
|
| 90 |
+
# Find the contour with the largest area
|
| 91 |
+
largest_contour = max(contours, key=cv2.contourArea)
|
| 92 |
+
|
| 93 |
+
# Extract the vertices of the contour
|
| 94 |
+
polygon = largest_contour.reshape(-1, 2).tolist()
|
| 95 |
+
|
| 96 |
+
return polygon
|
| 97 |
+
|
| 98 |
+
def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray:
|
| 99 |
+
"""
|
| 100 |
+
Convert a polygon to a segmentation mask.
|
| 101 |
+
|
| 102 |
+
Args:
|
| 103 |
+
- polygon (list): List of (x, y) coordinates representing the vertices of the polygon.
|
| 104 |
+
- image_shape (tuple): Shape of the image (height, width) for the mask.
|
| 105 |
+
|
| 106 |
+
Returns:
|
| 107 |
+
- np.ndarray: Segmentation mask with the polygon filled.
|
| 108 |
+
"""
|
| 109 |
+
# Create an empty mask
|
| 110 |
+
mask = np.zeros(image_shape, dtype=np.uint8)
|
| 111 |
+
|
| 112 |
+
# Convert polygon to an array of points
|
| 113 |
+
pts = np.array(polygon, dtype=np.int32)
|
| 114 |
+
|
| 115 |
+
# Fill the polygon with white color (255)
|
| 116 |
+
cv2.fillPoly(mask, [pts], color=(255,))
|
| 117 |
+
|
| 118 |
+
return mask
|
| 119 |
+
|
| 120 |
+
def get_boxes(results: DetectionResult) -> List[List[List[float]]]:
|
| 121 |
+
boxes = []
|
| 122 |
+
for result in results:
|
| 123 |
+
xyxy = result.box.xyxy
|
| 124 |
+
boxes.append(xyxy)
|
| 125 |
+
|
| 126 |
+
return [boxes]
|
| 127 |
+
|
| 128 |
+
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
|
| 129 |
+
masks = masks.cpu().float()
|
| 130 |
+
masks = masks.permute(0, 2, 3, 1)
|
| 131 |
+
masks = masks.mean(axis=-1)
|
| 132 |
+
masks = (masks > 0).int()
|
| 133 |
+
masks = masks.numpy().astype(np.uint8)
|
| 134 |
+
masks = list(masks)
|
| 135 |
+
|
| 136 |
+
#print(masks)
|
| 137 |
+
|
| 138 |
+
if polygon_refinement:
|
| 139 |
+
for idx, mask in enumerate(masks):
|
| 140 |
+
shape = mask.shape
|
| 141 |
+
polygon = mask_to_polygon(mask)
|
| 142 |
+
mask = polygon_to_mask(polygon, shape)
|
| 143 |
+
masks[idx] = mask
|
| 144 |
+
|
| 145 |
+
return masks
|
| 146 |
+
|
| 147 |
+
def get_alphacomp_mask(mask, image, random_color=True):
|
| 148 |
+
annotated_frame_pil = Image.fromarray(image).convert("RGBA")
|
| 149 |
+
#mask_image_pil = Image.fromarray((mask_image.cpu().numpy() * 255).astype(np.uint8)).convert("RGBA")
|
| 150 |
+
mask_image_pil = Image.fromarray(mask).convert("RGBA")
|
| 151 |
+
|
| 152 |
+
return np.array(Image.alpha_composite(annotated_frame_pil, mask_image_pil))
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
# Use Grounding DINO to detect a set of labels in an image in a zero-shot fashion.
|
| 156 |
+
detector_id = "IDEA-Research/grounding-dino-tiny"
|
| 157 |
+
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=SAM_device)
|
| 158 |
+
|
| 159 |
+
#Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes.
|
| 160 |
+
segmenter_id = "facebook/sam-vit-base"
|
| 161 |
+
processor = AutoProcessor.from_pretrained(segmenter_id)
|
| 162 |
+
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(SAM_device)
|
| 163 |
+
|
| 164 |
+
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3) -> List[Dict[str, Any]]:
|
| 165 |
+
labels = [label if label.endswith(".") else label+"." for label in labels]
|
| 166 |
+
|
| 167 |
+
with torch.no_grad():
|
| 168 |
+
results = object_detector(image, candidate_labels=labels, threshold=threshold)
|
| 169 |
+
torch.cuda.empty_cache()
|
| 170 |
+
|
| 171 |
+
results = [DetectionResult.from_dict(result) for result in results]
|
| 172 |
+
#print("DINO results:", results)
|
| 173 |
+
return results
|
| 174 |
+
|
| 175 |
+
def segment_SAM(image: Image.Image, detection_results: List[Dict[str, Any]], polygon_refinement: bool = False) -> List[DetectionResult]:
|
| 176 |
+
boxes = get_boxes(detection_results)
|
| 177 |
+
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(SAM_device)
|
| 178 |
+
|
| 179 |
+
with torch.no_grad():
|
| 180 |
+
outputs = segmentator(**inputs)
|
| 181 |
+
torch.cuda.empty_cache()
|
| 182 |
+
|
| 183 |
+
masks = processor.post_process_masks(masks=outputs.pred_masks, original_sizes=inputs.original_sizes,
|
| 184 |
+
reshaped_input_sizes=inputs.reshaped_input_sizes)[0]
|
| 185 |
+
|
| 186 |
+
#print("Masks:", masks)
|
| 187 |
+
masks = refine_masks(masks, polygon_refinement)
|
| 188 |
+
|
| 189 |
+
for detection_result, mask in zip(detection_results, masks):
|
| 190 |
+
detection_result.mask = mask
|
| 191 |
+
|
| 192 |
+
return detection_results
|
| 193 |
+
|
| 194 |
+
def grounded_segmentation(image: Union[Image.Image, str], labels: List[str], threshold: float = 0.3,
|
| 195 |
+
polygon_refinement: bool = False) -> Tuple[np.ndarray, List[DetectionResult]]:
|
| 196 |
+
|
| 197 |
+
if isinstance(image, str):
|
| 198 |
+
image = load_image(image)
|
| 199 |
+
|
| 200 |
+
detections = detect(image, labels, threshold)
|
| 201 |
+
segmented = segment_SAM(image, detections, polygon_refinement)
|
| 202 |
+
|
| 203 |
+
return np.array(image), segmented
|
| 204 |
+
|
| 205 |
+
def get_finalmask(image_array, detections):
|
| 206 |
+
for i,d in enumerate(detections):
|
| 207 |
+
mask_ = d.__getattribute__('mask')
|
| 208 |
+
if i==0:
|
| 209 |
+
image_with_mask = get_alphacomp_mask(mask_, image_array)
|
| 210 |
+
else:
|
| 211 |
+
image_with_mask += get_alphacomp_mask(mask_, image_array)
|
| 212 |
+
|
| 213 |
+
return image_with_mask
|
| 214 |
+
|
| 215 |
+
#Preprocessing Mask
|
| 216 |
+
kernel = np.ones((3, 3), np.uint8) # Taking a matrix of size 3 as the kernel
|
| 217 |
+
def preprocess_mask(pipe, inp_mask, expan_lvl, blur_lvl):
|
| 218 |
+
if expan_lvl>0:
|
| 219 |
+
inp_mask = Image.fromarray(cv2.dilate(np.array(inp_mask), kernel, iterations=expan_lvl))
|
| 220 |
+
|
| 221 |
+
if blur_lvl>0:
|
| 222 |
+
inp_mask = pipe.mask_processor.blur(inp_mask, blur_factor=blur)
|
| 223 |
+
|
| 224 |
+
# inp_mask = Image.fromarray(np.array(inp_mask))
|
| 225 |
+
return inp_mask
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def generate_mask(inp_image, label, threshold):
|
| 229 |
+
image_array, segments = grounded_segmentation(image=inp_image, labels=label, threshold=threshold, polygon_refinement=True,)
|
| 230 |
+
inp_mask = get_finalmask(image_array, segments)
|
| 231 |
+
# print(type(inp_mask))
|
| 232 |
+
return inp_mask
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
#Setting up Flux (Schnell) Inpainting
|
| 236 |
+
inpaint_pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
| 237 |
|
| 238 |
#Uncomment the following 4 lines, if you want LoRA Realism weights added to the pipeline
|
| 239 |
# inpaint_pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better")
|
|
|
|
| 244 |
#torch.cuda.empty_cache()
|
| 245 |
|
| 246 |
@spaces.GPU()
|
| 247 |
+
def process(input_image_editor, input_text, strength, seed, randomize_seed, num_inference_steps, guidance_scale, threshold, expan_lvl, blur_lvl, progress=gr.Progress(track_tqdm=True)):
|
| 248 |
if not input_text:
|
| 249 |
raise gr.Error("Please enter a text prompt.")
|
| 250 |
+
#Object identification
|
| 251 |
item = gemini_predict(input_text)
|
| 252 |
#print(item)
|
| 253 |
|
|
|
|
| 258 |
|
| 259 |
if randomize_seed:
|
| 260 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
|
|
|
| 261 |
|
| 262 |
+
|
| 263 |
+
#Generating Mask
|
| 264 |
+
label = [item]
|
| 265 |
+
gen_mask = generate_mask(image, label, threshold)
|
| 266 |
+
#Pre-processing Mask, optional
|
| 267 |
+
if expan_lvl>0 or blur_lvl>0:
|
| 268 |
+
gen_mask = preprocess_mask(inpaint_pipe, gen_mask, expan_lvl, blur_lvl)
|
| 269 |
+
|
| 270 |
+
#Inpainting
|
| 271 |
+
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 272 |
+
result = inpaint_pipe(prompt=input_text, image=image, mask_image=gen_mask, width=width, height=height,
|
| 273 |
strength=strength, num_inference_steps=num_inference_steps, generator=generator,
|
| 274 |
guidance_scale=guidance_scale).images[0]
|
| 275 |
|
| 276 |
|
| 277 |
+
return result, gen_mask, seed, item
|
| 278 |
|
| 279 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
| 280 |
gr.Markdown(MARKDOWN)
|
|
|
|
| 298 |
strength_slider = gr.Slider(
|
| 299 |
minimum=0.0,
|
| 300 |
maximum=1.0,
|
| 301 |
+
value=0.8,
|
| 302 |
step=0.01,
|
| 303 |
label="Strength"
|
| 304 |
)
|
| 305 |
num_inference_steps = gr.Slider(
|
| 306 |
minimum=1,
|
| 307 |
maximum=100,
|
| 308 |
+
value=32,
|
| 309 |
step=1,
|
| 310 |
label="Number of inference steps"
|
| 311 |
)
|
|
|
|
| 314 |
minimum=1,
|
| 315 |
maximum=15,
|
| 316 |
step=0.1,
|
| 317 |
+
value=5,
|
| 318 |
)
|
| 319 |
seed_number = gr.Number(
|
| 320 |
label="Seed",
|
| 321 |
+
value=26,
|
| 322 |
precision=0
|
| 323 |
)
|
| 324 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
| 325 |
+
with gr.Accordion("Mask Settings", open=False):
|
| 326 |
+
SAM_threshold = gr.Slider(
|
| 327 |
+
minimum=0.0,
|
| 328 |
+
maximum=1.0,
|
| 329 |
+
value=0.4,
|
| 330 |
+
step=0.01,
|
| 331 |
+
label="Threshold"
|
| 332 |
+
)
|
| 333 |
+
expansion_level = gr.Slider(
|
| 334 |
+
minimum=0,
|
| 335 |
+
maximum=5,
|
| 336 |
+
value=2,
|
| 337 |
+
step=1,
|
| 338 |
+
label="Mask Expansion level"
|
| 339 |
+
)
|
| 340 |
+
blur_level = gr.Slider(
|
| 341 |
+
minimum=0,
|
| 342 |
+
maximum=5,
|
| 343 |
+
step=1,
|
| 344 |
+
value=1,
|
| 345 |
+
label="Mask Blur level"
|
| 346 |
+
)
|
| 347 |
+
# with gr.Accordion("Upload a mask", open=False):
|
| 348 |
+
# uploaded_mask_component = gr.Image(label="Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources=["upload"], type="pil")
|
| 349 |
submit_button_component = gr.Button(value='Inpaint', variant='primary')
|
| 350 |
with gr.Column(scale=1):
|
| 351 |
output_image_component = gr.Image(type='pil', image_mode='RGB', label='Generated Image')
|
|
|
|
| 356 |
|
| 357 |
submit_button_component.click(
|
| 358 |
fn=process,
|
| 359 |
+
inputs=[input_image_component, input_text_component, strength_slider, seed_number, randomize_seed, num_inference_steps, guidance_scale, SAM_threshold, expansion_level, blur_level],
|
| 360 |
outputs=[output_image_component, output_mask_component, output_seed, identified_item]
|
| 361 |
)
|
| 362 |
|