File size: 14,164 Bytes
d015b2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
Metadata-Version: 2.4
Name: groq
Version: 0.15.0
Summary: The official Python library for the groq API
Project-URL: Homepage, https://github.com/groq/groq-python
Project-URL: Repository, https://github.com/groq/groq-python
Author-email: Groq <[email protected]>
License-Expression: Apache-2.0
License-File: LICENSE
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: MacOS
Classifier: Operating System :: Microsoft :: Windows
Classifier: Operating System :: OS Independent
Classifier: Operating System :: POSIX
Classifier: Operating System :: POSIX :: Linux
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Typing :: Typed
Requires-Python: >=3.8
Requires-Dist: anyio<5,>=3.5.0
Requires-Dist: distro<2,>=1.7.0
Requires-Dist: httpx<1,>=0.23.0
Requires-Dist: pydantic<3,>=1.9.0
Requires-Dist: sniffio
Requires-Dist: typing-extensions<5,>=4.10
Description-Content-Type: text/markdown
# Groq Python API library
[](https://pypi.org/project/groq/)
The Groq Python library provides convenient access to the Groq REST API from any Python 3.8+
application. The library includes type definitions for all request params and response fields,
and offers both synchronous and asynchronous clients powered by [httpx](https://github.com/encode/httpx).
It is generated with [Stainless](https://www.stainlessapi.com/).
## Documentation
The REST API documentation can be found on [console.groq.com](https://console.groq.com/docs). The full API of this library can be found in [api.md](https://github.com/groq/groq-python/tree/main/api.md).
## Installation
```sh
# install from PyPI
pip install groq
```
## Usage
The full API of this library can be found in [api.md](https://github.com/groq/groq-python/tree/main/api.md).
```python
import os
from groq import Groq
client = Groq(
api_key=os.environ.get("GROQ_API_KEY"), # This is the default and can be omitted
)
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": "Explain the importance of low latency LLMs",
}
],
model="llama3-8b-8192",
)
print(chat_completion.choices[0].message.content)
```
While you can provide an `api_key` keyword argument,
we recommend using [python-dotenv](https://pypi.org/project/python-dotenv/)
to add `GROQ_API_KEY="My API Key"` to your `.env` file
so that your API Key is not stored in source control.
## Async usage
Simply import `AsyncGroq` instead of `Groq` and use `await` with each API call:
```python
import os
import asyncio
from groq import AsyncGroq
client = AsyncGroq(
api_key=os.environ.get("GROQ_API_KEY"), # This is the default and can be omitted
)
async def main() -> None:
chat_completion = await client.chat.completions.create(
messages=[
{
"role": "user",
"content": "Explain the importance of low latency LLMs",
}
],
model="llama3-8b-8192",
)
print(chat_completion.choices[0].message.content)
asyncio.run(main())
```
Functionality between the synchronous and asynchronous clients is otherwise identical.
## Using types
Nested request parameters are [TypedDicts](https://docs.python.org/3/library/typing.html#typing.TypedDict). Responses are [Pydantic models](https://docs.pydantic.dev) which also provide helper methods for things like:
- Serializing back into JSON, `model.to_json()`
- Converting to a dictionary, `model.to_dict()`
Typed requests and responses provide autocomplete and documentation within your editor. If you would like to see type errors in VS Code to help catch bugs earlier, set `python.analysis.typeCheckingMode` to `basic`.
## Handling errors
When the library is unable to connect to the API (for example, due to network connection problems or a timeout), a subclass of `groq.APIConnectionError` is raised.
When the API returns a non-success status code (that is, 4xx or 5xx
response), a subclass of `groq.APIStatusError` is raised, containing `status_code` and `response` properties.
All errors inherit from `groq.APIError`.
```python
import groq
from groq import Groq
client = Groq()
try:
client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a helpful assistant.",
},
{
"role": "user",
"content": "Explain the importance of low latency LLMs",
},
],
model="llama3-8b-8192",
)
except groq.APIConnectionError as e:
print("The server could not be reached")
print(e.__cause__) # an underlying Exception, likely raised within httpx.
except groq.RateLimitError as e:
print("A 429 status code was received; we should back off a bit.")
except groq.APIStatusError as e:
print("Another non-200-range status code was received")
print(e.status_code)
print(e.response)
```
Error codes are as follows:
| Status Code | Error Type |
| ----------- | -------------------------- |
| 400 | `BadRequestError` |
| 401 | `AuthenticationError` |
| 403 | `PermissionDeniedError` |
| 404 | `NotFoundError` |
| 422 | `UnprocessableEntityError` |
| 429 | `RateLimitError` |
| >=500 | `InternalServerError` |
| N/A | `APIConnectionError` |
### Retries
Certain errors are automatically retried 2 times by default, with a short exponential backoff.
Connection errors (for example, due to a network connectivity problem), 408 Request Timeout, 409 Conflict,
429 Rate Limit, and >=500 Internal errors are all retried by default.
You can use the `max_retries` option to configure or disable retry settings:
```python
from groq import Groq
# Configure the default for all requests:
client = Groq(
# default is 2
max_retries=0,
)
# Or, configure per-request:
client.with_options(max_retries=5).chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a helpful assistant.",
},
{
"role": "user",
"content": "Explain the importance of low latency LLMs",
},
],
model="llama3-8b-8192",
)
```
### Timeouts
By default requests time out after 1 minute. You can configure this with a `timeout` option,
which accepts a float or an [`httpx.Timeout`](https://www.python-httpx.org/advanced/#fine-tuning-the-configuration) object:
```python
from groq import Groq
# Configure the default for all requests:
client = Groq(
# 20 seconds (default is 1 minute)
timeout=20.0,
)
# More granular control:
client = Groq(
timeout=httpx.Timeout(60.0, read=5.0, write=10.0, connect=2.0),
)
# Override per-request:
client.with_options(timeout=5.0).chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a helpful assistant.",
},
{
"role": "user",
"content": "Explain the importance of low latency LLMs",
},
],
model="llama3-8b-8192",
)
```
On timeout, an `APITimeoutError` is thrown.
Note that requests that time out are [retried twice by default](https://github.com/groq/groq-python/tree/main/#retries).
## Advanced
### Logging
We use the standard library [`logging`](https://docs.python.org/3/library/logging.html) module.
You can enable logging by setting the environment variable `GROQ_LOG` to `info`.
```shell
$ export GROQ_LOG=info
```
Or to `debug` for more verbose logging.
### How to tell whether `None` means `null` or missing
In an API response, a field may be explicitly `null`, or missing entirely; in either case, its value is `None` in this library. You can differentiate the two cases with `.model_fields_set`:
```py
if response.my_field is None:
if 'my_field' not in response.model_fields_set:
print('Got json like {}, without a "my_field" key present at all.')
else:
print('Got json like {"my_field": null}.')
```
### Accessing raw response data (e.g. headers)
The "raw" Response object can be accessed by prefixing `.with_raw_response.` to any HTTP method call, e.g.,
```py
from groq import Groq
client = Groq()
response = client.chat.completions.with_raw_response.create(
messages=[{
"role": "system",
"content": "You are a helpful assistant.",
}, {
"role": "user",
"content": "Explain the importance of low latency LLMs",
}],
model="llama3-8b-8192",
)
print(response.headers.get('X-My-Header'))
completion = response.parse() # get the object that `chat.completions.create()` would have returned
print(completion.id)
```
These methods return an [`APIResponse`](https://github.com/groq/groq-python/tree/main/src/groq/_response.py) object.
The async client returns an [`AsyncAPIResponse`](https://github.com/groq/groq-python/tree/main/src/groq/_response.py) with the same structure, the only difference being `await`able methods for reading the response content.
#### `.with_streaming_response`
The above interface eagerly reads the full response body when you make the request, which may not always be what you want.
To stream the response body, use `.with_streaming_response` instead, which requires a context manager and only reads the response body once you call `.read()`, `.text()`, `.json()`, `.iter_bytes()`, `.iter_text()`, `.iter_lines()` or `.parse()`. In the async client, these are async methods.
```python
with client.chat.completions.with_streaming_response.create(
messages=[
{
"role": "system",
"content": "You are a helpful assistant.",
},
{
"role": "user",
"content": "Explain the importance of low latency LLMs",
},
],
model="llama3-8b-8192",
) as response:
print(response.headers.get("X-My-Header"))
for line in response.iter_lines():
print(line)
```
The context manager is required so that the response will reliably be closed.
### Making custom/undocumented requests
This library is typed for convenient access to the documented API.
If you need to access undocumented endpoints, params, or response properties, the library can still be used.
#### Undocumented endpoints
To make requests to undocumented endpoints, you can make requests using `client.get`, `client.post`, and other
http verbs. Options on the client will be respected (such as retries) when making this request.
```py
import httpx
response = client.post(
"/foo",
cast_to=httpx.Response,
body={"my_param": True},
)
print(response.headers.get("x-foo"))
```
#### Undocumented request params
If you want to explicitly send an extra param, you can do so with the `extra_query`, `extra_body`, and `extra_headers` request
options.
#### Undocumented response properties
To access undocumented response properties, you can access the extra fields like `response.unknown_prop`. You
can also get all the extra fields on the Pydantic model as a dict with
[`response.model_extra`](https://docs.pydantic.dev/latest/api/base_model/#pydantic.BaseModel.model_extra).
### Configuring the HTTP client
You can directly override the [httpx client](https://www.python-httpx.org/api/#client) to customize it for your use case, including:
- Support for [proxies](https://www.python-httpx.org/advanced/proxies/)
- Custom [transports](https://www.python-httpx.org/advanced/transports/)
- Additional [advanced](https://www.python-httpx.org/advanced/clients/) functionality
```python
import httpx
from groq import Groq, DefaultHttpxClient
client = Groq(
# Or use the `GROQ_BASE_URL` env var
base_url="http://my.test.server.example.com:8083",
http_client=DefaultHttpxClient(
proxy="http://my.test.proxy.example.com",
transport=httpx.HTTPTransport(local_address="0.0.0.0"),
),
)
```
You can also customize the client on a per-request basis by using `with_options()`:
```python
client.with_options(http_client=DefaultHttpxClient(...))
```
### Managing HTTP resources
By default the library closes underlying HTTP connections whenever the client is [garbage collected](https://docs.python.org/3/reference/datamodel.html#object.__del__). You can manually close the client using the `.close()` method if desired, or with a context manager that closes when exiting.
```py
from groq import Groq
with Groq() as client:
# make requests here
...
# HTTP client is now closed
```
## Versioning
This package generally follows [SemVer](https://semver.org/spec/v2.0.0.html) conventions, though certain backwards-incompatible changes may be released as minor versions:
1. Changes that only affect static types, without breaking runtime behavior.
2. Changes to library internals which are technically public but not intended or documented for external use. _(Please open a GitHub issue to let us know if you are relying on such internals.)_
3. Changes that we do not expect to impact the vast majority of users in practice.
We take backwards-compatibility seriously and work hard to ensure you can rely on a smooth upgrade experience.
We are keen for your feedback; please open an [issue](https://www.github.com/groq/groq-python/issues) with questions, bugs, or suggestions.
### Determining the installed version
If you've upgraded to the latest version but aren't seeing any new features you were expecting then your python environment is likely still using an older version.
You can determine the version that is being used at runtime with:
```py
import groq
print(groq.__version__)
```
## Requirements
Python 3.8 or higher.
## Contributing
See [the contributing documentation](https://github.com/groq/groq-python/tree/main/./CONTRIBUTING.md).
|