import gradio as gr import cv2 import numpy as np from PIL import Image def exposure_fusion(image_paths): try: # Open images from filepaths and convert to OpenCV format (BGR) images_cv = [cv2.cvtColor(np.array(Image.open(path)), cv2.COLOR_RGB2BGR) for path in image_paths] # Align images using AlignMTB align_mtb = cv2.createAlignMTB() aligned_images = images_cv.copy() align_mtb.process(images_cv, aligned_images) # Merge images using exposure fusion (Mertens) merge_mertens = cv2.createMergeMertens() fused = merge_mertens.process(aligned_images) # Convert result from float32 to uint8 and back to RGB fused = np.clip(fused * 255, 0, 255).astype('uint8') fused = cv2.cvtColor(fused, cv2.COLOR_BGR2RGB) return fused except Exception as e: return f"Error: {e}" def stabilize_crop_and_exposure_fusion(image_paths): try: # Open images from filepaths and convert to OpenCV format (BGR) images_cv = [cv2.cvtColor(np.array(Image.open(path)), cv2.COLOR_RGB2BGR) for path in image_paths] # Align images using AlignMTB align_mtb = cv2.createAlignMTB() aligned_images = images_cv.copy() align_mtb.process(images_cv, aligned_images) # Determine valid regions in each image (to remove black borders) bounding_rects = [] for img in aligned_images: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) _, mask = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY) coords = cv2.findNonZero(mask) if coords is not None: x, y, w, h = cv2.boundingRect(coords) bounding_rects.append((x, y, w, h)) else: bounding_rects.append((0, 0, img.shape[1], img.shape[0])) # Compute the common intersection rectangle if not bounding_rects: return "No valid images provided." x_min, y_min, w, h = bounding_rects[0] x_max = x_min + w y_max = y_min + h for (x, y, w, h) in bounding_rects[1:]: x_min = max(x_min, x) y_min = max(y_min, y) x_max = min(x_max, x + w) y_max = min(y_max, y + h) if x_max <= x_min or y_max <= y_min: return "Images do not overlap enough for cropping." # Crop each aligned image to the intersection region cropped_images = [img[y_min:y_max, x_min:x_max] for img in aligned_images] # Merge the cropped images using exposure fusion (Mertens) merge_mertens = cv2.createMergeMertens() fused = merge_mertens.process(cropped_images) fused = np.clip(fused * 255, 0, 255).astype('uint8') fused = cv2.cvtColor(fused, cv2.COLOR_BGR2RGB) return fused except Exception as e: return f"Error: {e}" def process_images(image_paths, advanced): if not image_paths: return None if advanced: return stabilize_crop_and_exposure_fusion(image_paths) else: return exposure_fusion(image_paths) # Gradio Interface: Upload multiple images and choose the processing method. inputs = [ gr.File(type="filepath", label="Upload Images", file_count="multiple"), gr.Checkbox(label="Advanced: Stabilize & Crop Before Fusion", value=False) ] iface = gr.Interface( fn=process_images, inputs=inputs, outputs="image", title="Exposure Fusion with Stabilization", description=( "Upload multiple images with varying exposures. " "If 'Advanced: Stabilize & Crop Before Fusion' is selected, " "the app aligns the images, crops out extra borders, then fuses them." ), ) iface.launch()