Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import numpy as np | |
def exposure_fusion(images): | |
try: | |
# Convert PIL images (RGB) to OpenCV format (BGR) | |
images_cv = [cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) for img in images] | |
# Align images using AlignMTB | |
align_mtb = cv2.createAlignMTB() | |
aligned_images = images_cv.copy() | |
align_mtb.process(images_cv, aligned_images) | |
# Merge images using exposure fusion (Mertens) | |
merge_mertens = cv2.createMergeMertens() | |
fused = merge_mertens.process(aligned_images) | |
# Convert result from float32 to uint8 and back to RGB | |
fused = np.clip(fused * 255, 0, 255).astype('uint8') | |
fused = cv2.cvtColor(fused, cv2.COLOR_BGR2RGB) | |
return fused | |
except Exception as e: | |
return f"Error: {e}" | |
def stabilize_crop_and_exposure_fusion(images): | |
try: | |
# Convert images from PIL (RGB) to OpenCV format (BGR) | |
images_cv = [cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) for img in images] | |
# Align images using AlignMTB | |
align_mtb = cv2.createAlignMTB() | |
aligned_images = images_cv.copy() | |
align_mtb.process(images_cv, aligned_images) | |
# Determine valid regions in each image (to remove black borders) | |
bounding_rects = [] | |
for img in aligned_images: | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
# Pixels above a small threshold are considered valid | |
_, mask = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY) | |
coords = cv2.findNonZero(mask) | |
if coords is not None: | |
x, y, w, h = cv2.boundingRect(coords) | |
bounding_rects.append((x, y, w, h)) | |
else: | |
bounding_rects.append((0, 0, img.shape[1], img.shape[0])) | |
# Compute the common intersection rectangle | |
if not bounding_rects: | |
return "No valid images provided." | |
x_min, y_min, w, h = bounding_rects[0] | |
x_max = x_min + w | |
y_max = y_min + h | |
for (x, y, w, h) in bounding_rects[1:]: | |
x_min = max(x_min, x) | |
y_min = max(y_min, y) | |
x_max = min(x_max, x + w) | |
y_max = min(y_max, y + h) | |
if x_max <= x_min or y_max <= y_min: | |
return "Images do not overlap enough for cropping." | |
# Crop each aligned image to the intersection region | |
cropped_images = [img[y_min:y_max, x_min:x_max] for img in aligned_images] | |
# Merge the cropped images using exposure fusion (Mertens) | |
merge_mertens = cv2.createMergeMertens() | |
fused = merge_mertens.process(cropped_images) | |
fused = np.clip(fused * 255, 0, 255).astype('uint8') | |
fused = cv2.cvtColor(fused, cv2.COLOR_BGR2RGB) | |
return fused | |
except Exception as e: | |
return f"Error: {e}" | |
def process_images(images, advanced): | |
if not images: | |
return None | |
# If advanced option is selected, use stabilization & cropping before fusion. | |
if advanced: | |
return stabilize_crop_and_exposure_fusion(images) | |
else: | |
return exposure_fusion(images) | |
# Gradio Interface: Upload multiple images and choose the processing method. | |
inputs = [ | |
gr.File(type="file", label="Upload Images", file_count="multiple"), | |
gr.Checkbox(label="Advanced: Stabilize & Crop Before Fusion", value=False) | |
] | |
iface = gr.Interface( | |
fn=process_images, | |
inputs=inputs, | |
outputs="image", | |
title="Exposure Fusion with Stabilization", | |
description=( | |
"Upload multiple images with varying exposures. " | |
"If 'Advanced: Stabilize & Crop Before Fusion' is selected, " | |
"the app aligns the images, crops out extra borders, then fuses them." | |
), | |
) | |
iface.launch() | |