#!/usr/bin/env python # -*- coding:utf-8 -*- # Power by Zongsheng Yue 2021-11-24 20:29:36 import math import torch from pathlib import Path from collections import OrderedDict import torch.nn.functional as F from copy import deepcopy def calculate_parameters(net): out = 0 for param in net.parameters(): out += param.numel() return out def pad_input(x, mod): h, w = x.shape[-2:] bottom = int(math.ceil(h/mod)*mod -h) right = int(math.ceil(w/mod)*mod - w) x_pad = F.pad(x, pad=(0, right, 0, bottom), mode='reflect') return x_pad def forward_chop(net, x, net_kwargs=None, scale=1, shave=10, min_size=160000): n_GPUs = 1 b, c, h, w = x.size() h_half, w_half = h // 2, w // 2 h_size, w_size = h_half + shave, w_half + shave lr_list = [ x[:, :, 0:h_size, 0:w_size], x[:, :, 0:h_size, (w - w_size):w], x[:, :, (h - h_size):h, 0:w_size], x[:, :, (h - h_size):h, (w - w_size):w]] if w_size * h_size < min_size: sr_list = [] for i in range(0, 4, n_GPUs): lr_batch = torch.cat(lr_list[i:(i + n_GPUs)], dim=0) if net_kwargs is None: sr_batch = net(lr_batch) else: sr_batch = net(lr_batch, **net_kwargs) sr_list.extend(sr_batch.chunk(n_GPUs, dim=0)) else: sr_list = [ forward_chop(patch, shave=shave, min_size=min_size) \ for patch in lr_list ] h, w = scale * h, scale * w h_half, w_half = scale * h_half, scale * w_half h_size, w_size = scale * h_size, scale * w_size shave *= scale output = x.new(b, c, h, w) output[:, :, 0:h_half, 0:w_half] \ = sr_list[0][:, :, 0:h_half, 0:w_half] output[:, :, 0:h_half, w_half:w] \ = sr_list[1][:, :, 0:h_half, (w_size - w + w_half):w_size] output[:, :, h_half:h, 0:w_half] \ = sr_list[2][:, :, (h_size - h + h_half):h_size, 0:w_half] output[:, :, h_half:h, w_half:w] \ = sr_list[3][:, :, (h_size - h + h_half):h_size, (w_size - w + w_half):w_size] return output def measure_time(net, inputs, num_forward=100): ''' Measuring the average runing time (seconds) for pytorch. out = net(*inputs) ''' start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) start.record() with torch.set_grad_enabled(False): for _ in range(num_forward): out = net(*inputs) end.record() torch.cuda.synchronize() return start.elapsed_time(end) / 1000 def reload_model(model, ckpt): if list(model.state_dict().keys())[0].startswith('module.'): if list(ckpt.keys())[0].startswith('module.'): ckpt = ckpt else: ckpt = OrderedDict({f'module.{key}':value for key, value in ckpt.items()}) else: if list(ckpt.keys())[0].startswith('module.'): ckpt = OrderedDict({key[7:]:value for key, value in ckpt.items()}) else: ckpt = ckpt model.load_state_dict(ckpt, True) def compute_hinge_loss(real_output, fake_output, x_start_, r1_lambda): if r1_lambda == 0: real_loss_total = torch.relu(torch.ones_like(real_output) - real_output).mean() fake_loss_total = torch.relu(torch.ones_like(fake_output) + fake_output).mean() else: real_loss_ = torch.relu(torch.ones_like(real_output) - real_output).mean() # 计算真实样本的梯度 grad_real = torch.autograd.grad(outputs=real_output.sum(), inputs=x_start_, create_graph=True)[0] # 计算梯度惩罚 grad_penalty = (grad_real.contiguous().view(grad_real.size(0), -1).norm(2, dim=1) ** 2).mean() * r1_lambda real_loss_total = real_loss_ + grad_penalty fake_loss_total = torch.relu(torch.ones_like(fake_output) + fake_output).mean() real_loss = real_loss_total fake_loss = fake_loss_total loss_d = real_loss + fake_loss return loss_d def reload_model_(model, ckpt): if list(model.state_dict().keys())[0].startswith('model.'): if list(ckpt.keys())[0].startswith('model.'): ckpt = ckpt else: ckpt = OrderedDict({f'model.{key}':value for key, value in ckpt.items()}) else: if list(ckpt.keys())[0].startswith('model.'): ckpt = OrderedDict({key[7:]:value for key, value in ckpt.items()}) else: ckpt = ckpt model.load_state_dict(ckpt, True) def reload_model_IDE(model, ckpt): extracted_dict = OrderedDict() for key, value in ckpt.items(): if key.startswith('E_st'): new_key = key.replace('E_st.', '') extracted_dict[new_key] = value model.load_state_dict(extracted_dict, True) class EMA(): def __init__(self, model, decay): self.model = model self.decay = decay self.shadow = {} self.backup = {} def register(self): for name, param in self.model.named_parameters(): if param.requires_grad: self.shadow[name] = param.data.clone() def update(self): for name, param in self.model.named_parameters(): if param.requires_grad: assert name in self.shadow new_average = (1.0 - self.decay) * param.data + self.decay * self.shadow[name] self.shadow[name] = new_average.clone() def apply_shadow(self): for name, param in self.model.named_parameters(): if param.requires_grad: assert name in self.shadow self.backup[name] = param.data param.data = self.shadow[name] def restore(self): for name, param in self.model.named_parameters(): if param.requires_grad: assert name in self.backup param.data = self.backup[name] self.backup = {}