Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,10 +9,15 @@ from test_ccsr_tile import load_pipeline
|
|
9 |
import argparse
|
10 |
from accelerate import Accelerator
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
class Args:
|
18 |
def __init__(self, **kwargs):
|
@@ -20,10 +25,12 @@ class Args:
|
|
20 |
|
21 |
@spaces.GPU
|
22 |
def initialize_models():
|
23 |
-
|
|
|
|
|
24 |
|
25 |
try:
|
26 |
-
# Download model repository
|
27 |
model_path = snapshot_download(
|
28 |
repo_id="NightRaven109/CCSRModels",
|
29 |
token=os.environ['Read2']
|
@@ -42,24 +49,28 @@ def initialize_models():
|
|
42 |
)
|
43 |
|
44 |
# Initialize accelerator
|
45 |
-
accelerator = Accelerator(
|
46 |
mixed_precision=args.mixed_precision,
|
47 |
)
|
48 |
|
49 |
# Load pipeline
|
50 |
-
pipeline = load_pipeline(args, accelerator,
|
|
|
51 |
|
52 |
-
#
|
53 |
-
pipeline.unet.eval()
|
54 |
-
pipeline.controlnet.eval()
|
55 |
-
pipeline.vae.eval()
|
56 |
-
pipeline.text_encoder.eval()
|
57 |
|
58 |
-
# Move pipeline to CUDA
|
59 |
-
pipeline = pipeline.to("cuda")
|
60 |
|
61 |
# Initialize generator
|
62 |
-
generator = torch.Generator("cuda")
|
|
|
|
|
|
|
63 |
|
64 |
return True
|
65 |
|
@@ -67,6 +78,7 @@ def initialize_models():
|
|
67 |
print(f"Error initializing models: {str(e)}")
|
68 |
return False
|
69 |
|
|
|
70 |
@spaces.GPU(processing_timeout=180)
|
71 |
def process_image(
|
72 |
input_image,
|
@@ -79,15 +91,13 @@ def process_image(
|
|
79 |
upscale_factor=4,
|
80 |
color_fix_method="adain"
|
81 |
):
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
if pipeline is None:
|
87 |
-
if not initialize_models():
|
88 |
-
return None
|
89 |
|
90 |
-
|
|
|
91 |
args = Args(
|
92 |
added_prompt=prompt,
|
93 |
negative_prompt=negative_prompt,
|
@@ -105,13 +115,13 @@ def process_image(
|
|
105 |
tile_diffusion_stride=None,
|
106 |
start_steps=999,
|
107 |
start_point='lr',
|
108 |
-
use_vae_encode_condition=True,
|
109 |
sample_times=1
|
110 |
)
|
111 |
|
112 |
# Set seed if provided
|
113 |
if seed is not None:
|
114 |
-
generator.manual_seed(seed)
|
115 |
|
116 |
# Process input image
|
117 |
validation_image = Image.fromarray(input_image)
|
@@ -128,42 +138,26 @@ def process_image(
|
|
128 |
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
|
129 |
width, height = validation_image.size
|
130 |
|
131 |
-
# Ensure pipeline is on CUDA and in eval mode
|
132 |
-
pipeline = pipeline.to("cuda")
|
133 |
-
pipeline.unet.eval()
|
134 |
-
pipeline.controlnet.eval()
|
135 |
-
pipeline.vae.eval()
|
136 |
-
pipeline.text_encoder.eval()
|
137 |
-
|
138 |
# Generate image
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
negative_prompt=args.negative_prompt,
|
159 |
-
conditioning_scale=args.conditioning_scale,
|
160 |
-
start_steps=args.start_steps,
|
161 |
-
start_point=args.start_point,
|
162 |
-
use_vae_encode_condition=True, # Set to True
|
163 |
-
)
|
164 |
-
except Exception as e:
|
165 |
-
print(f"Pipeline execution error: {str(e)}")
|
166 |
-
raise
|
167 |
|
168 |
image = output.images[0]
|
169 |
|
|
|
9 |
import argparse
|
10 |
from accelerate import Accelerator
|
11 |
|
12 |
+
# Global variables
|
13 |
+
class ModelContainer:
|
14 |
+
def __init__(self):
|
15 |
+
self.pipeline = None
|
16 |
+
self.generator = None
|
17 |
+
self.accelerator = None
|
18 |
+
self.is_initialized = False
|
19 |
+
|
20 |
+
model_container = ModelContainer()
|
21 |
|
22 |
class Args:
|
23 |
def __init__(self, **kwargs):
|
|
|
25 |
|
26 |
@spaces.GPU
|
27 |
def initialize_models():
|
28 |
+
"""Initialize models only if they haven't been initialized yet"""
|
29 |
+
if model_container.is_initialized:
|
30 |
+
return True
|
31 |
|
32 |
try:
|
33 |
+
# Download model repository (only once)
|
34 |
model_path = snapshot_download(
|
35 |
repo_id="NightRaven109/CCSRModels",
|
36 |
token=os.environ['Read2']
|
|
|
49 |
)
|
50 |
|
51 |
# Initialize accelerator
|
52 |
+
model_container.accelerator = Accelerator(
|
53 |
mixed_precision=args.mixed_precision,
|
54 |
)
|
55 |
|
56 |
# Load pipeline
|
57 |
+
model_container.pipeline = load_pipeline(args, model_container.accelerator,
|
58 |
+
enable_xformers_memory_efficient_attention=False)
|
59 |
|
60 |
+
# Set models to eval mode
|
61 |
+
model_container.pipeline.unet.eval()
|
62 |
+
model_container.pipeline.controlnet.eval()
|
63 |
+
model_container.pipeline.vae.eval()
|
64 |
+
model_container.pipeline.text_encoder.eval()
|
65 |
|
66 |
+
# Move pipeline to CUDA and set to eval mode once
|
67 |
+
model_container.pipeline = model_container.pipeline.to("cuda")
|
68 |
|
69 |
# Initialize generator
|
70 |
+
model_container.generator = torch.Generator("cuda")
|
71 |
+
|
72 |
+
# Set initialization flag
|
73 |
+
model_container.is_initialized = True
|
74 |
|
75 |
return True
|
76 |
|
|
|
78 |
print(f"Error initializing models: {str(e)}")
|
79 |
return False
|
80 |
|
81 |
+
@torch.no_grad() # Add no_grad decorator for inference
|
82 |
@spaces.GPU(processing_timeout=180)
|
83 |
def process_image(
|
84 |
input_image,
|
|
|
91 |
upscale_factor=4,
|
92 |
color_fix_method="adain"
|
93 |
):
|
94 |
+
# Initialize models if not already done
|
95 |
+
if not model_container.is_initialized:
|
96 |
+
if not initialize_models():
|
97 |
+
return None
|
|
|
|
|
|
|
98 |
|
99 |
+
try:
|
100 |
+
# Create args object
|
101 |
args = Args(
|
102 |
added_prompt=prompt,
|
103 |
negative_prompt=negative_prompt,
|
|
|
115 |
tile_diffusion_stride=None,
|
116 |
start_steps=999,
|
117 |
start_point='lr',
|
118 |
+
use_vae_encode_condition=True,
|
119 |
sample_times=1
|
120 |
)
|
121 |
|
122 |
# Set seed if provided
|
123 |
if seed is not None:
|
124 |
+
model_container.generator.manual_seed(seed)
|
125 |
|
126 |
# Process input image
|
127 |
validation_image = Image.fromarray(input_image)
|
|
|
138 |
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
|
139 |
width, height = validation_image.size
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
# Generate image
|
142 |
+
inference_time, output = model_container.pipeline(
|
143 |
+
args.t_max,
|
144 |
+
args.t_min,
|
145 |
+
args.tile_diffusion,
|
146 |
+
args.tile_diffusion_size,
|
147 |
+
args.tile_diffusion_stride,
|
148 |
+
args.added_prompt,
|
149 |
+
validation_image,
|
150 |
+
num_inference_steps=args.num_inference_steps,
|
151 |
+
generator=model_container.generator,
|
152 |
+
height=height,
|
153 |
+
width=width,
|
154 |
+
guidance_scale=args.guidance_scale,
|
155 |
+
negative_prompt=args.negative_prompt,
|
156 |
+
conditioning_scale=args.conditioning_scale,
|
157 |
+
start_steps=args.start_steps,
|
158 |
+
start_point=args.start_point,
|
159 |
+
use_vae_encode_condition=True,
|
160 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
image = output.images[0]
|
163 |
|