Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import gradio as gr | |
import spaces | |
import numpy as np | |
from PIL import Image | |
import safetensors.torch | |
from huggingface_hub import snapshot_download | |
from accelerate import Accelerator | |
from accelerate.utils import set_seed | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
UNet2DConditionModel, | |
) | |
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor | |
from models.controlnet import ControlNetModel | |
from pipelines.pipeline_ccsr import StableDiffusionControlNetPipeline | |
from myutils.wavelet_color_fix import wavelet_color_fix, adain_color_fix | |
# Initialize global variables for models | |
pipeline = None | |
generator = None | |
accelerator = None | |
model_path = None | |
def load_pipeline(accelerator, model_path): | |
# Load scheduler | |
scheduler = DDPMScheduler.from_pretrained( | |
model_path, | |
subfolder="stable-diffusion-2-1-base/scheduler" | |
) | |
# Load models | |
text_encoder = CLIPTextModel.from_pretrained( | |
model_path, | |
subfolder="stable-diffusion-2-1-base/text_encoder" | |
) | |
tokenizer = CLIPTokenizer.from_pretrained( | |
model_path, | |
subfolder="stable-diffusion-2-1-base/tokenizer" | |
) | |
feature_extractor = CLIPImageProcessor.from_pretrained( | |
os.path.join(model_path, "stable-diffusion-2-1-base/feature_extractor") | |
) | |
unet = UNet2DConditionModel.from_pretrained( | |
model_path, | |
subfolder="stable-diffusion-2-1-base/unet" | |
) | |
controlnet = ControlNetModel.from_pretrained( | |
model_path, | |
subfolder="Controlnet" | |
) | |
vae = AutoencoderKL.from_pretrained( | |
model_path, | |
subfolder="vae" | |
) | |
# Freeze models | |
for model in [vae, text_encoder, unet, controlnet]: | |
model.requires_grad_(False) | |
# Initialize pipeline | |
pipeline = StableDiffusionControlNetPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
feature_extractor=feature_extractor, | |
unet=unet, | |
controlnet=controlnet, | |
scheduler=scheduler, | |
safety_checker=None, | |
requires_safety_checker=False, | |
) | |
# Set weight dtype based on mixed precision | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
# Move models to accelerator device with appropriate dtype | |
for model in [text_encoder, vae, unet, controlnet]: | |
model.to(accelerator.device, dtype=weight_dtype) | |
return pipeline | |
def initialize_models(): | |
global pipeline, generator, accelerator, model_path | |
# Initialize accelerator | |
accelerator = Accelerator( | |
mixed_precision="fp16", | |
gradient_accumulation_steps=1 | |
) | |
try: | |
# Download the entire repository | |
model_path = snapshot_download( | |
repo_id="NightRaven109/CCSRModels", | |
token=os.environ['Read2'] | |
) | |
# Load pipeline using the original loading function | |
pipeline = load_pipeline(accelerator, model_path) | |
# Initialize generator | |
generator = torch.Generator(device=accelerator.device) | |
return True | |
except Exception as e: | |
print(f"Error initializing models: {str(e)}") | |
return False | |
def process_image( | |
input_image, | |
prompt="clean, high-resolution, 8k", | |
negative_prompt="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed", | |
guidance_scale=1.0, | |
conditioning_scale=1.0, | |
num_inference_steps=20, | |
seed=42, | |
upscale_factor=2, | |
color_fix_method="adain" | |
): | |
global pipeline, generator, accelerator | |
if pipeline is None: | |
if not initialize_models(): | |
return None | |
try: | |
# Set seed | |
if seed is not None: | |
generator.manual_seed(seed) | |
# Process input image | |
validation_image = Image.fromarray(input_image) | |
ori_width, ori_height = validation_image.size | |
# Resize logic from original script | |
resize_flag = False | |
rscale = upscale_factor | |
process_size = 512 # Same as args.process_size in original | |
if ori_width < process_size//rscale or ori_height < process_size//rscale: | |
scale = (process_size//rscale)/min(ori_width, ori_height) | |
tmp_image = validation_image.resize((round(scale*ori_width), round(scale*ori_height))) | |
validation_image = tmp_image | |
resize_flag = True | |
validation_image = validation_image.resize((validation_image.size[0]*rscale, validation_image.size[1]*rscale)) | |
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8)) | |
width, height = validation_image.size | |
# Move pipeline to GPU for processing | |
pipeline.to(accelerator.device) | |
# Generate image | |
with torch.no_grad(): | |
inference_time, output = pipeline( | |
0.6666, # t_max | |
0.0, # t_min | |
False, # tile_diffusion | |
None, # tile_diffusion_size | |
None, # tile_diffusion_stride | |
prompt, | |
validation_image, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
height=height, | |
width=width, | |
guidance_scale=guidance_scale, | |
negative_prompt=negative_prompt, | |
conditioning_scale=conditioning_scale, | |
start_steps=999, | |
start_point='lr', | |
use_vae_encode_condition=False | |
) | |
image = output.images[0] | |
# Apply color fixing if specified | |
if color_fix_method != "none": | |
fix_func = wavelet_color_fix if color_fix_method == "wavelet" else adain_color_fix | |
image = fix_func(image, validation_image) | |
if resize_flag: | |
image = image.resize((ori_width*rscale, ori_height*rscale)) | |
# Move pipeline back to CPU | |
pipeline.to("cpu") | |
torch.cuda.empty_cache() | |
return image | |
except Exception as e: | |
print(f"Error processing image: {str(e)}") | |
return None | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=[ | |
gr.Image(label="Input Image"), | |
gr.Textbox(label="Prompt", value="clean, high-resolution, 8k"), | |
gr.Textbox(label="Negative Prompt", value="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed"), | |
gr.Slider(minimum=1.0, maximum=20.0, value=1.0, label="Guidance Scale"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, label="Conditioning Scale"), | |
gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Steps"), | |
gr.Number(label="Seed", value=42), | |
gr.Slider(minimum=1, maximum=4, value=2, step=1, label="Upscale Factor"), | |
gr.Radio(["none", "wavelet", "adain"], label="Color Fix Method", value="adain"), | |
], | |
outputs=gr.Image(label="Generated Image"), | |
title="Controllable Conditional Super-Resolution", | |
description="Upload an image to enhance its resolution using CCSR." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |