File size: 6,331 Bytes
6ecc7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

"""

Projected discriminator architecture from

"StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis".

"""

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.spectral_norm import SpectralNorm
from torchvision.transforms import RandomCrop, Normalize
import timm
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD

from ADD.th_utils import misc
from models.shared import ResidualBlock, FullyConnectedLayer
from models.vit_utils import make_vit_backbone, forward_vit, make_sd_backbone
from models.DiffAugment import DiffAugment
from ADD.utils.util_net import reload_model_

from functools import partial

class SpectralConv1d(nn.Conv1d):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        SpectralNorm.apply(self, name='weight', n_power_iterations=1, dim=0, eps=1e-12)


class BatchNormLocal(nn.Module):
    def __init__(self, num_features: int, affine: bool = True, virtual_bs: int = 3, eps: float = 1e-5):
        super().__init__()
        self.virtual_bs = virtual_bs
        self.eps = eps
        self.affine = affine

        if self.affine:
            self.weight = nn.Parameter(torch.ones(num_features))
            self.bias = nn.Parameter(torch.zeros(num_features))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shape = x.size()

        # Reshape batch into groups.
        G = np.ceil(x.size(0)/self.virtual_bs).astype(int)
        x = x.view(G, -1, x.size(-2), x.size(-1))

        # Calculate stats.
        mean = x.mean([1, 3], keepdim=True)
        var = x.var([1, 3], keepdim=True, unbiased=False)
        x = (x - mean) / (torch.sqrt(var + self.eps))

        if self.affine:
            x = x * self.weight[None, :, None] + self.bias[None, :, None]

        return x.view(shape)


def make_block(channels: int, kernel_size: int) -> nn.Module:
    return nn.Sequential(
        SpectralConv1d(
            channels,
            channels,
            kernel_size = kernel_size,
            padding = kernel_size//2,
            padding_mode = 'circular',
        ),
        #BatchNormLocal(channels),
        nn.GroupNorm(4, channels),
        nn.LeakyReLU(0.2, True),
    )

class DiscHead(nn.Module):
    def __init__(self, channels: int, c_dim: int, cmap_dim: int = 64):
        super().__init__()
        self.channels = channels
        self.c_dim = c_dim
        self.cmap_dim = cmap_dim

        self.main = nn.Sequential(
            make_block(channels, kernel_size=1),
            ResidualBlock(make_block(channels, kernel_size=9))
        )

        if self.c_dim > 0:
            self.cmapper = FullyConnectedLayer(self.c_dim, cmap_dim)
            self.cls = SpectralConv1d(channels, cmap_dim, kernel_size=1, padding=0)
        else:
            self.cls = SpectralConv1d(channels, 1, kernel_size=1, padding=0)

    def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
        h = self.main(x)
        out = self.cls(h)

        if self.c_dim > 0:
            cmap = self.cmapper(c).unsqueeze(-1)
            out = (out * cmap).sum(1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))

        return out

class DINO(torch.nn.Module):
    def __init__(self, hooks: list[int] = [2,5,8,11], hook_patch: bool = True):
        super().__init__()
        self.n_hooks = len(hooks) + int(hook_patch)

        self.model = make_vit_backbone(
            timm.create_model('vit_small_patch16_224.dino', pretrained=False),
            patch_size=[16,16], hooks=hooks, hook_patch=hook_patch,
        )
        reload_model_(self.model, torch.load('preset/models/dino/dino_deitsmall16_pretrain.pth'))
        self.model = self.model.eval().requires_grad_(False)


        self.img_resolution = self.model.model.patch_embed.img_size[0]
        self.embed_dim = self.model.model.embed_dim
        self.norm = Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        ''' input: x in [0, 1]; output: dict of activations '''
        x = F.interpolate(x, self.img_resolution, mode='area')
        x = self.norm(x)
        features = forward_vit(self.model, x)
        return features


class ProjectedDiscriminator(nn.Module):
    def __init__(self, c_dim: int, diffaug: bool = True, p_crop: float = 0.5):
        super().__init__()
        self.c_dim = c_dim
        self.diffaug = diffaug
        self.p_crop = p_crop

        self.dino = DINO()

        heads = []
        for i in range(self.dino.n_hooks):
            heads += [str(i), DiscHead(self.dino.embed_dim, c_dim)],
        self.heads = nn.ModuleDict(heads)

    def train(self, mode: bool = True):
        self.dino = self.dino.train(False)
        self.heads = self.heads.train(mode)
        return self

    def eval(self):
        return self.train(False)

    def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
        # Apply augmentation (x in [-1, 1]).
        if self.diffaug:
            x = DiffAugment(x, policy='translation,cutout')

        # Transform to [0, 1].
        x = x.add(1).div(2)

        # Take crops with probablity p_crop if the image is larger.
        if x.size(-1) > self.dino.img_resolution and np.random.random() < self.p_crop:
            x = RandomCrop(self.dino.img_resolution)(x)

        # Forward pass through DINO ViT.
        features = self.dino(x)

        # Apply discriminator heads.
        logits = []
        for k, head in self.heads.items():
            features[k].requires_grad_(True)
            logits.append(head(features[k], c).view(x.size(0), -1))
        #logits = torch.cat(logits, dim=1)

        return logits, features