Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,151 Bytes
6ecc7d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Shared architecture blocks."""
from typing import Callable
import numpy as np
import torch
import torch.nn as nn
from ADD.th_utils.ops import bias_act
class ResidualBlock(nn.Module):
def __init__(self, fn: Callable):
super().__init__()
self.fn = fn
def forward(self, x: torch.Tensor) -> torch.Tensor:
return (self.fn(x) + x) / np.sqrt(2)
class FullyConnectedLayer(nn.Module):
def __init__(
self,
in_features: int, # Number of input features.
out_features: int, # Number of output features.
bias: bool = True, # Apply additive bias before the activation function?
activation: str = 'linear', # Activation function: 'relu', 'lrelu', etc.
lr_multiplier: float = 1.0, # Learning rate multiplier.
weight_init: float = 1.0, # Initial standard deviation of the weight tensor.
bias_init: float = 0.0, # Initial value for the additive bias.
):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.activation = activation
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) * (weight_init / lr_multiplier))
bias_init = np.broadcast_to(np.asarray(bias_init, dtype=np.float32), [out_features])
self.bias = torch.nn.Parameter(torch.from_numpy(bias_init / lr_multiplier)) if bias else None
self.weight_gain = lr_multiplier / np.sqrt(in_features)
self.bias_gain = lr_multiplier
def forward(self, x: torch.Tensor) -> torch.Tensor:
w = self.weight.to(x.dtype) * self.weight_gain
b = self.bias
if b is not None:
b = b.to(x.dtype)
if self.bias_gain != 1:
b = b * self.bias_gain
if self.activation == 'linear' and b is not None:
x = torch.addmm(b.unsqueeze(0), x, w.t())
else:
x = x.matmul(w.t())
x = bias_act.bias_act(x, b, act=self.activation)
return x
def extra_repr(self) -> str:
return f'in_features={self.in_features:d}, out_features={self.out_features:d}, activation={self.activation:s}'
class MLP(nn.Module):
def __init__(
self,
features_list: list[int], # Number of features in each layer of the MLP.
activation: str = 'linear', # Activation function: 'relu', 'lrelu', etc.
lr_multiplier: float = 1.0, # Learning rate multiplier.
linear_out: bool = False # Use the 'linear' activation function for the output layer?
):
super().__init__()
num_layers = len(features_list) - 1
self.num_layers = num_layers
self.out_dim = features_list[-1]
for idx in range(num_layers):
in_features = features_list[idx]
out_features = features_list[idx + 1]
if linear_out and idx == num_layers-1:
activation = 'linear'
layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier)
setattr(self, f'fc{idx}', layer)
def forward(self, x: torch.Tensor) -> torch.Tensor:
''' if x is sequence of tokens, shift tokens to batch and apply MLP to all'''
shift2batch = (x.ndim == 3)
if shift2batch:
B, K, C = x.shape
x = x.flatten(0,1)
for idx in range(self.num_layers):
layer = getattr(self, f'fc{idx}')
x = layer(x)
if shift2batch:
x = x.reshape(B, K, -1)
return x
|