# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import os import random import shutil import time from glob import glob from pathlib import Path import gradio as gr import torch import trimesh import uvicorn from fastapi import FastAPI from fastapi.staticfiles import StaticFiles import uuid import base64 import html from hy3dgen.shapegen.utils import logger MAX_SEED = 1e7 import spaces if True: import os import subprocess import sys import shlex print("cd /home/user/app/hy3dgen/texgen/differentiable_renderer/ && bash compile_mesh_painter.sh") os.system("cd /home/user/app/hy3dgen/texgen/differentiable_renderer/ && bash compile_mesh_painter.sh") print('install custom') subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True) @spaces.GPU def my_gpu_function(): pass def get_example_img_list(): print('Loading example img list ...') return sorted(glob('./assets/example_images/**/*.png', recursive=True)) def get_example_txt_list(): print('Loading example txt list ...') txt_list = list() for line in open('./assets/example_prompts.txt', encoding='utf-8'): txt_list.append(line.strip()) return txt_list def get_example_mv_list(): print('Loading example mv list ...') mv_list = list() root = './assets/example_mv_images' for mv_dir in os.listdir(root): view_list = [] for view in ['front', 'back', 'left', 'right']: path = os.path.join(root, mv_dir, f'{view}.png') if os.path.exists(path): view_list.append(path) else: view_list.append(None) mv_list.append(view_list) return mv_list def gen_save_folder(max_size=200): os.makedirs(SAVE_DIR, exist_ok=True) # 获取所有文件夹路径 dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()] # 如果文件夹数量超过 max_size,删除创建时间最久的文件夹 if len(dirs) >= max_size: # 按创建时间排序,最久的排在前面 oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime) shutil.rmtree(oldest_dir) print(f"Removed the oldest folder: {oldest_dir}") # 生成一个新的 uuid 文件夹名称 new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4())) os.makedirs(new_folder, exist_ok=True) print(f"Created new folder: {new_folder}") return new_folder def export_mesh(mesh, save_folder, textured=False, type='glb'): if textured: path = os.path.join(save_folder, f'textured_mesh.{type}') else: path = os.path.join(save_folder, f'white_mesh.{type}') if type not in ['glb', 'obj']: mesh.export(path) else: mesh.export(path, include_normals=textured) return path def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def build_model_viewer_html(save_folder, path, height=660, width=790, textured=False): # Remove first folder from path to make relative path if textured: related_path = f"./textured_mesh.glb" template_name = './assets/modelviewer-textured-template.html' output_html_path = os.path.join(save_folder, f'textured_mesh.html') mesh_file_path = os.path.join(save_folder, f'textured_mesh.glb') else: related_path = f"./white_mesh.glb" template_name = './assets/modelviewer-template.html' output_html_path = os.path.join(save_folder, f'white_mesh.html') mesh_file_path = os.path.join(save_folder, f'white_mesh.glb') offset = 50 if textured else 10 with open(os.path.join(CURRENT_DIR, template_name), 'r', encoding='utf-8') as f: template_html = f.read() with open(output_html_path, 'w', encoding='utf-8') as f: template_html = template_html.replace('#height#', f'{height - offset}') template_html = template_html.replace('#width#', f'{width}') #template_html = template_html.replace('#src#', f'{related_path}/') template_html = template_html.replace('#src#', f'https://nicolasg2523-picsto3d.hf.space/gradio_api/file=/tmp/{path}') f.write(template_html) return output_html_path @spaces.GPU(duration=40) def _gen_shape( caption=None, image=None, mv_image_front=None, mv_image_back=None, mv_image_left=None, mv_image_right=None, steps=50, guidance_scale=7.5, seed=1234, octree_resolution=256, check_box_rembg=False, num_chunks=200000, randomize_seed: bool = False, ): if not MV_MODE and image is None and caption is None: raise gr.Error("Please provide either a caption or an image.") if MV_MODE: if mv_image_front is None and mv_image_back is None and mv_image_left is None and mv_image_right is None: raise gr.Error("Please provide at least one view image.") image = {} if mv_image_front: image['front'] = mv_image_front if mv_image_back: image['back'] = mv_image_back if mv_image_left: image['left'] = mv_image_left if mv_image_right: image['right'] = mv_image_right seed = int(randomize_seed_fn(seed, randomize_seed)) octree_resolution = int(octree_resolution) if caption: print('prompt is', caption) save_folder = gen_save_folder() stats = { 'model': { 'shapegen': f'{args.model_path}/{args.subfolder}', 'texgen': f'{args.texgen_model_path}', }, 'params': { 'caption': caption, 'steps': steps, 'guidance_scale': guidance_scale, 'seed': seed, 'octree_resolution': octree_resolution, 'check_box_rembg': check_box_rembg, 'num_chunks': num_chunks, } } time_meta = {} if image is None: start_time = time.time() try: image = t2i_worker(caption) except Exception as e: raise gr.Error(f"Text to 3D is disable. Please enable it by `python gradio_app.py --enable_t23d`.") time_meta['text2image'] = time.time() - start_time # remove disk io to make responding faster, uncomment at your will. # image.save(os.path.join(save_folder, 'input.png')) if MV_MODE: start_time = time.time() for k, v in image.items(): if check_box_rembg or v.mode == "RGB": img = rmbg_worker(v.convert('RGB')) image[k] = img time_meta['remove background'] = time.time() - start_time else: if check_box_rembg or image.mode == "RGB": start_time = time.time() image = rmbg_worker(image.convert('RGB')) time_meta['remove background'] = time.time() - start_time # remove disk io to make responding faster, uncomment at your will. # image.save(os.path.join(save_folder, 'rembg.png')) # image to white model start_time = time.time() generator = torch.Generator() generator = generator.manual_seed(int(seed)) outputs = i23d_worker( image=image, num_inference_steps=steps, guidance_scale=guidance_scale, generator=generator, octree_resolution=octree_resolution, num_chunks=num_chunks, output_type='mesh' ) time_meta['shape generation'] = time.time() - start_time logger.info("---Shape generation takes %s seconds ---" % (time.time() - start_time)) tmp_start = time.time() mesh = export_to_trimesh(outputs)[0] time_meta['export to trimesh'] = time.time() - tmp_start stats['number_of_faces'] = mesh.faces.shape[0] stats['number_of_vertices'] = mesh.vertices.shape[0] stats['time'] = time_meta main_image = image if not MV_MODE else image['front'] return mesh, main_image, save_folder, stats, seed @spaces.GPU(duration=90) def generation_all( caption=None, image=None, mv_image_front=None, mv_image_back=None, mv_image_left=None, mv_image_right=None, steps=50, guidance_scale=7.5, seed=1234, octree_resolution=256, check_box_rembg=False, num_chunks=200000, randomize_seed: bool = False, ): start_time_0 = time.time() mesh, image, save_folder, stats, seed = _gen_shape( caption, image, mv_image_front=mv_image_front, mv_image_back=mv_image_back, mv_image_left=mv_image_left, mv_image_right=mv_image_right, steps=steps, guidance_scale=guidance_scale, seed=seed, octree_resolution=octree_resolution, check_box_rembg=check_box_rembg, num_chunks=num_chunks, randomize_seed=randomize_seed, ) path = export_mesh(mesh, save_folder, textured=False) # tmp_time = time.time() # mesh = floater_remove_worker(mesh) # mesh = degenerate_face_remove_worker(mesh) # logger.info("---Postprocessing takes %s seconds ---" % (time.time() - tmp_time)) # stats['time']['postprocessing'] = time.time() - tmp_time tmp_time = time.time() mesh = face_reduce_worker(mesh) logger.info("---Face Reduction takes %s seconds ---" % (time.time() - tmp_time)) stats['time']['face reduction'] = time.time() - tmp_time tmp_time = time.time() textured_mesh = texgen_worker(mesh, image) logger.info("---Texture Generation takes %s seconds ---" % (time.time() - tmp_time)) stats['time']['texture generation'] = time.time() - tmp_time stats['time']['total'] = time.time() - start_time_0 textured_mesh.metadata['extras'] = stats path_textured = export_mesh(textured_mesh, save_folder, textured=True) model_viewer_html_textured = build_model_viewer_html(save_folder, path_textured, height=HTML_HEIGHT, width=HTML_WIDTH, textured=True) if args.low_vram_mode: torch.cuda.empty_cache() return ( gr.update(value=path), gr.update(value=path_textured), model_viewer_html_textured, stats, seed, ) @spaces.GPU(duration=40) def shape_generation( caption=None, image=None, mv_image_front=None, mv_image_back=None, mv_image_left=None, mv_image_right=None, steps=50, guidance_scale=7.5, seed=1234, octree_resolution=256, check_box_rembg=False, num_chunks=200000, randomize_seed: bool = False, ): start_time_0 = time.time() mesh, image, save_folder, stats, seed = _gen_shape( caption, image, mv_image_front=mv_image_front, mv_image_back=mv_image_back, mv_image_left=mv_image_left, mv_image_right=mv_image_right, steps=steps, guidance_scale=guidance_scale, seed=seed, octree_resolution=octree_resolution, check_box_rembg=check_box_rembg, num_chunks=num_chunks, randomize_seed=randomize_seed, ) stats['time']['total'] = time.time() - start_time_0 mesh.metadata['extras'] = stats path = export_mesh(mesh, save_folder, textured=False) print(path) filepath=gr.File(path) print(filepath) model_viewer_html = build_model_viewer_html(save_folder, path, height=HTML_HEIGHT, width=HTML_WIDTH) if args.low_vram_mode: torch.cuda.empty_cache() return ( gr.update(value=path), model_viewer_html, stats, seed, model_viewer_html ) def js_update(file): return f"" def build_app(): title = 'Generación de modelo basado en imágenes (de 1 a 4 vistas)' title_html = f"""
Bienvenido a 3DMarket