import torch from diffusers import StableDiffusion3Pipeline, StableDiffusionPipeline, DiffusionPipeline, StableDiffusionXLPipeline, DPMSolverSinglestepScheduler import gradio as gr import os import random import numpy as np import spaces HF_TOKEN = os.getenv("HF_TOKEN") if torch.cuda.is_available(): device = "cuda" print("Using GPU") else: device = "cpu" print("Using CPU") MAX_SEED = np.iinfo(np.int32).max # Initialize the pipelines for each sd model sd3_medium_pipe = StableDiffusion3Pipeline.from_pretrained( "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16 ) sd3_medium_pipe.to(device) sd2_1_pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16 ) sd2_1_pipe.to(device) sdxl_pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) sdxl_pipe.to(device) sdxl_flash_pipe = StableDiffusionXLPipeline.from_pretrained( "sd-community/sdxl-flash", torch_dtype=torch.float16 ) sdxl_flash_pipe.to(device) # Ensure sampler uses "trailing" timesteps for sdxl flash. sdxl_flash_pipe.scheduler = DPMSolverSinglestepScheduler.from_config(sdxl_flash_pipe.scheduler.config, timestep_spacing="trailing") # Helper function to generate images for a single model @spaces.GPU(duration=80) def generate_single_image( prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt, model_choice, generator, ): # Select the correct pipeline based on the model choice if model_choice == "sd3 medium": pipe = sd3_medium_pipe elif model_choice == "sd2.1": pipe = sd2_1_pipe elif model_choice == "sdxl": pipe = sdxl_pipe elif model_choice == "sdxl flash": pipe = sdxl_flash_pipe else: raise ValueError(f"Invalid model choice: {model_choice}") output = pipe( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, height=height, width=width, guidance_scale=guidance_scale, generator=generator, num_images_per_prompt=num_images_per_prompt, ).images return output # Define the image generation function for the Arena tab @spaces.GPU(duration=80) def generate_arena_images( prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt, model_choice_1, model_choice_2, progress=gr.Progress(track_tqdm=True), ): if seed == 0: seed = random.randint(1, 2**32 - 1) generator = torch.Generator().manual_seed(seed) # Generate images for both models images_1 = generate_single_image( prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt, model_choice_1, generator, ) images_2 = generate_single_image( prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt, model_choice_2, generator, ) return images_1, images_2 # Define the image generation function for the Individual tab @spaces.GPU(duration=80) def generate_individual_image( prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt, model_choice, progress=gr.Progress(track_tqdm=True), ): if seed == 0: seed = random.randint(1, 2**32 - 1) generator = torch.Generator().manual_seed(seed) output = generate_single_image( prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt, model_choice, generator, ) return output # Create the Gradio interface examples = [ ["A white car racing fast to the moon."], ["A woman in a red dress singing on top of a building."], ["An astronaut on mars in a futuristic cyborg suit."], ] css = """ .gradio-container{max-width: 1000px !important} h1{text-align:center} """ with gr.Blocks(css=css) as demo: with gr.Row(): with gr.Column(): gr.HTML( """

Stable Diffusion Arena

""" ) gr.HTML( """ Made by Nick088
Discord """ ) with gr.Tabs(): with gr.TabItem("Arena"): with gr.Group(): with gr.Column(): prompt = gr.Textbox( label="Prompt", info="Describe the image you want", placeholder="A cat...", ) model_choice_1 = gr.Dropdown( label="Stable Diffusion Model 1", choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"], value="sd3 medium", ) model_choice_2 = gr.Dropdown( label="Stable Diffusion Model 2", choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"], value="sdxl", ) run_button = gr.Button("Run") result_1 = gr.Gallery(label="Generated Images (Model 1)", elem_id="gallery_1") result_2 = gr.Gallery(label="Generated Images (Model 2)", elem_id="gallery_2") with gr.Accordion("Advanced options", open=False): with gr.Row(): negative_prompt = gr.Textbox( label="Negative Prompt", info="Describe what you don't want in the image", value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", placeholder="Ugly, bad anatomy...", ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", minimum=1, maximum=50, value=25, step=1, ) guidance_scale = gr.Slider( label="Guidance Scale", info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", minimum=0.0, maximum=10.0, value=7.5, step=0.1, ) with gr.Row(): width = gr.Slider( label="Width", info="Width of the Image", minimum=256, maximum=1344, step=32, value=1024, ) height = gr.Slider( label="Height", info="Height of the Image", minimum=256, maximum=1344, step=32, value=1024, ) with gr.Row(): seed = gr.Slider( value=42, minimum=0, maximum=MAX_SEED, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one", ) num_images_per_prompt = gr.Slider( label="Images Per Prompt", info="Number of Images to generate with the settings", minimum=1, maximum=4, step=1, value=2, ) gr.Examples( examples=examples, inputs=[prompt], outputs=[result_1, result_2], fn=generate_arena_images, ) gr.on( triggers=[ prompt.submit, run_button.click, ], fn=generate_arena_images, inputs=[ prompt, negative_prompt, num_inference_steps, width, height, guidance_scale, seed, num_images_per_prompt, model_choice_1, model_choice_2, ], outputs=[result_1, result_2], ) with gr.TabItem("Individual"): with gr.Group(): with gr.Column(): prompt = gr.Textbox( label="Prompt", info="Describe the image you want", placeholder="A cat...", ) model_choice = gr.Dropdown( label="Stable Diffusion Model", choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"], value="sd3 medium", ) run_button = gr.Button("Run") result = gr.Gallery(label="Generated AI Images", elem_id="gallery") with gr.Accordion("Advanced options", open=False): with gr.Row(): negative_prompt = gr.Textbox( label="Negative Prompt", info="Describe what you don't want in the image", value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", placeholder="Ugly, bad anatomy...", ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", minimum=1, maximum=50, value=25, step=1, ) guidance_scale = gr.Slider( label="Guidance Scale", info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", minimum=0.0, maximum=10.0, value=7.5, step=0.1, ) with gr.Row(): width = gr.Slider( label="Width", info="Width of the Image", minimum=256, maximum=1344, step=32, value=1024, ) height = gr.Slider( label="Height", info="Height of the Image", minimum=256, maximum=1344, step=32, value=1024, ) with gr.Row(): seed = gr.Slider( value=42, minimum=0, maximum=MAX_SEED, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one", ) num_images_per_prompt = gr.Slider( label="Images Per Prompt", info="Number of Images to generate with the settings", minimum=1, maximum=4, step=1, value=2, ) gr.Examples( examples=examples, inputs=[prompt], outputs=[result], fn=generate_individual_image, ) gr.on( triggers=[ prompt.submit, run_button.click, ], fn=generate_individual_image, inputs=[ prompt, negative_prompt, num_inference_steps, width, height, guidance_scale, seed, num_images_per_prompt, model_choice, ], outputs=[result], ) demo.queue().launch(share=False)