import torch
from diffusers import StableDiffusion3Pipeline, StableDiffusionPipeline, DiffusionPipeline, StableDiffusionXLPipeline, DPMSolverSinglestepScheduler
import gradio as gr
import os
import random
import numpy as np
import spaces
HF_TOKEN = os.getenv("HF_TOKEN")
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
MAX_SEED = np.iinfo(np.int32).max
# Initialize the pipelines for each sd model
sd3_medium_pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
)
sd3_medium_pipe.to(device)
sd2_1_pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16
)
sd2_1_pipe.to(device)
sdxl_pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
)
sdxl_pipe.to(device)
sdxl_flash_pipe = StableDiffusionXLPipeline.from_pretrained(
"sd-community/sdxl-flash", torch_dtype=torch.float16
)
sdxl_flash_pipe.to(device)
# Ensure sampler uses "trailing" timesteps for sdxl flash.
sdxl_flash_pipe.scheduler = DPMSolverSinglestepScheduler.from_config(sdxl_flash_pipe.scheduler.config, timestep_spacing="trailing")
# Helper function to generate images for a single model
@spaces.GPU(duration=80)
def generate_single_image(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice,
generator,
):
# Select the correct pipeline based on the model choice
if model_choice == "sd3 medium":
pipe = sd3_medium_pipe
elif model_choice == "sd2.1":
pipe = sd2_1_pipe
elif model_choice == "sdxl":
pipe = sdxl_pipe
elif model_choice == "sdxl flash":
pipe = sdxl_flash_pipe
else:
raise ValueError(f"Invalid model choice: {model_choice}")
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
height=height,
width=width,
guidance_scale=guidance_scale,
generator=generator,
num_images_per_prompt=num_images_per_prompt,
).images
return output
# Define the image generation function for the Arena tab
@spaces.GPU(duration=80)
def generate_arena_images(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice_1,
model_choice_2,
progress=gr.Progress(track_tqdm=True),
):
if seed == 0:
seed = random.randint(1, 2**32 - 1)
generator = torch.Generator().manual_seed(seed)
# Generate images for both models
images_1 = generate_single_image(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice_1,
generator,
)
images_2 = generate_single_image(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice_2,
generator,
)
return images_1, images_2
# Define the image generation function for the Individual tab
@spaces.GPU(duration=80)
def generate_individual_image(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice,
progress=gr.Progress(track_tqdm=True),
):
if seed == 0:
seed = random.randint(1, 2**32 - 1)
generator = torch.Generator().manual_seed(seed)
output = generate_single_image(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice,
generator,
)
return output
# Create the Gradio interface
examples = [
["A white car racing fast to the moon."],
["A woman in a red dress singing on top of a building."],
["An astronaut on mars in a futuristic cyborg suit."],
]
css = """
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
gr.HTML(
"""
Stable Diffusion Arena
"""
)
gr.HTML(
"""
Made by Nick088
"""
)
with gr.Tabs():
with gr.TabItem("Arena"):
with gr.Group():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
info="Describe the image you want",
placeholder="A cat...",
)
model_choice_1 = gr.Dropdown(
label="Stable Diffusion Model 1",
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
value="sd3 medium",
)
model_choice_2 = gr.Dropdown(
label="Stable Diffusion Model 2",
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
value="sdxl",
)
run_button = gr.Button("Run")
result_1 = gr.Gallery(label="Generated Images (Model 1)", elem_id="gallery_1")
result_2 = gr.Gallery(label="Generated Images (Model 2)", elem_id="gallery_2")
with gr.Accordion("Advanced options", open=False):
with gr.Row():
negative_prompt = gr.Textbox(
label="Negative Prompt",
info="Describe what you don't want in the image",
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
placeholder="Ugly, bad anatomy...",
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
minimum=1,
maximum=50,
value=25,
step=1,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
minimum=0.0,
maximum=10.0,
value=7.5,
step=0.1,
)
with gr.Row():
width = gr.Slider(
label="Width",
info="Width of the Image",
minimum=256,
maximum=1344,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
info="Height of the Image",
minimum=256,
maximum=1344,
step=32,
value=1024,
)
with gr.Row():
seed = gr.Slider(
value=42,
minimum=0,
maximum=MAX_SEED,
step=1,
label="Seed",
info="A starting point to initiate the generation process, put 0 for a random one",
)
num_images_per_prompt = gr.Slider(
label="Images Per Prompt",
info="Number of Images to generate with the settings",
minimum=1,
maximum=4,
step=1,
value=2,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result_1, result_2],
fn=generate_arena_images,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate_arena_images,
inputs=[
prompt,
negative_prompt,
num_inference_steps,
width,
height,
guidance_scale,
seed,
num_images_per_prompt,
model_choice_1,
model_choice_2,
],
outputs=[result_1, result_2],
)
with gr.TabItem("Individual"):
with gr.Group():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
info="Describe the image you want",
placeholder="A cat...",
)
model_choice = gr.Dropdown(
label="Stable Diffusion Model",
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
value="sd3 medium",
)
run_button = gr.Button("Run")
result = gr.Gallery(label="Generated AI Images", elem_id="gallery")
with gr.Accordion("Advanced options", open=False):
with gr.Row():
negative_prompt = gr.Textbox(
label="Negative Prompt",
info="Describe what you don't want in the image",
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
placeholder="Ugly, bad anatomy...",
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
minimum=1,
maximum=50,
value=25,
step=1,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
minimum=0.0,
maximum=10.0,
value=7.5,
step=0.1,
)
with gr.Row():
width = gr.Slider(
label="Width",
info="Width of the Image",
minimum=256,
maximum=1344,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
info="Height of the Image",
minimum=256,
maximum=1344,
step=32,
value=1024,
)
with gr.Row():
seed = gr.Slider(
value=42,
minimum=0,
maximum=MAX_SEED,
step=1,
label="Seed",
info="A starting point to initiate the generation process, put 0 for a random one",
)
num_images_per_prompt = gr.Slider(
label="Images Per Prompt",
info="Number of Images to generate with the settings",
minimum=1,
maximum=4,
step=1,
value=2,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result],
fn=generate_individual_image,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate_individual_image,
inputs=[
prompt,
negative_prompt,
num_inference_steps,
width,
height,
guidance_scale,
seed,
num_images_per_prompt,
model_choice,
],
outputs=[result],
)
demo.queue().launch(share=False)