Nick088's picture
revertinng the use same settings change till i find a fix
60fba13 verified
raw
history blame
14.1 kB
import torch
from diffusers import StableDiffusion3Pipeline, StableDiffusionPipeline, StableDiffusionXLPipeline, DPMSolverSinglestepScheduler
import gradio as gr
import os
import random
import numpy as np
import spaces
HF_TOKEN = os.getenv("HF_TOKEN")
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
MAX_SEED = np.iinfo(np.int32).max
# Initialize the pipelines for each sd model
sd3_medium_pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
)
sd3_medium_pipe.enable_model_cpu_offload()
sd2_1_pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16
)
sd2_1_pipe.enable_model_cpu_offload()
sdxl_pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
)
sdxl_pipe.enable_model_cpu_offload()
sdxl_flash_pipe = StableDiffusionXLPipeline.from_pretrained(
"sd-community/sdxl-flash", torch_dtype=torch.float16
)
sdxl_flash_pipe.enable_model_cpu_offload()
# Ensure sampler uses "trailing" timesteps for sdxl flash.
sdxl_flash_pipe.scheduler = DPMSolverSinglestepScheduler.from_config(sdxl_flash_pipe.scheduler.config, timestep_spacing="trailing")
# Helper function to generate images for a single model
@spaces.GPU(duration=80)
def generate_single_image(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice,
generator,
):
# Select the correct pipeline based on the model choice
if model_choice == "sd3 medium":
pipe = sd3_medium_pipe
elif model_choice == "sd2.1":
pipe = sd2_1_pipe
elif model_choice == "sdxl":
pipe = sdxl_pipe
elif model_choice == "sdxl flash":
pipe = sdxl_flash_pipe
else:
raise ValueError(f"Invalid model choice: {model_choice}")
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
height=height,
width=width,
guidance_scale=guidance_scale,
generator=generator,
num_images_per_prompt=num_images_per_prompt,
).images
return output
# Define the image generation function for the Arena tab
@spaces.GPU(duration=80)
def generate_arena_images(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice_1,
model_choice_2,
progress=gr.Progress(track_tqdm=True),
):
if seed == 0:
seed = random.randint(1, 2**32 - 1)
generator = torch.Generator().manual_seed(seed)
# Generate images for both models
images_1 = generate_single_image(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice_1,
generator,
)
images_2 = generate_single_image(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice_2,
generator,
)
return images_1, images_2
# Define the image generation function for the Individual tab
@spaces.GPU(duration=80)
def generate_individual_image(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice,
progress=gr.Progress(track_tqdm=True),
):
if seed == 0:
seed = random.randint(1, 2**32 - 1)
generator = torch.Generator().manual_seed(seed)
output = generate_single_image(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice,
generator,
)
return output
# Create the Gradio interface
examples = [
["A white car racing fast to the moon."],
["A woman in a red dress singing on top of a building."],
["An astronaut on mars in a futuristic cyborg suit."],
]
css = """
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
gr.HTML(
"""
<h1 style='text-align: center'>
Stable Diffusion Arena
</h1>
"""
)
gr.HTML(
"""
Made by <a href='https://linktr.ee/Nick088' target='_blank'>Nick088</a>
<br> <a href="https://discord.gg/osai"> <img src="https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge" alt="Discord"> </a>
"""
)
with gr.Tabs():
with gr.TabItem("Arena"):
with gr.Group():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
info="Describe the image you want",
placeholder="A cat...",
)
model_choice_1 = gr.Dropdown(
label="Stable Diffusion Model 1",
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
value="sd3 medium",
)
model_choice_2 = gr.Dropdown(
label="Stable Diffusion Model 2",
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
value="sdxl",
)
run_button = gr.Button("Run")
result_1 = gr.Gallery(label="Generated Images (Model 1)", elem_id="gallery_1")
result_2 = gr.Gallery(label="Generated Images (Model 2)", elem_id="gallery_2")
with gr.Accordion("Advanced options", open=False):
with gr.Row():
negative_prompt = gr.Textbox(
label="Negative Prompt",
info="Describe what you don't want in the image",
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
placeholder="Ugly, bad anatomy...",
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
minimum=1,
maximum=50,
value=25,
step=1,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
minimum=0.0,
maximum=10.0,
value=7.5,
step=0.1,
)
with gr.Row():
width = gr.Slider(
label="Width",
info="Width of the Image",
minimum=256,
maximum=1344,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
info="Height of the Image",
minimum=256,
maximum=1344,
step=32,
value=1024,
)
with gr.Row():
seed = gr.Slider(
value=42,
minimum=0,
maximum=MAX_SEED,
step=1,
label="Seed",
info="A starting point to initiate the generation process, put 0 for a random one",
)
num_images_per_prompt = gr.Slider(
label="Images Per Prompt",
info="Number of Images to generate with the settings",
minimum=1,
maximum=4,
step=1,
value=2,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result_1, result_2],
fn=generate_arena_images,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate_arena_images,
inputs=[
prompt,
negative_prompt,
num_inference_steps,
width,
height,
guidance_scale,
seed,
num_images_per_prompt,
model_choice_1,
model_choice_2,
],
outputs=[result_1, result_2],
)
with gr.TabItem("Individual"):
with gr.Group():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
info="Describe the image you want",
placeholder="A cat...",
)
model_choice = gr.Dropdown(
label="Stable Diffusion Model",
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
value="sd3 medium",
)
run_button = gr.Button("Run")
result = gr.Gallery(label="Generated AI Images", elem_id="gallery")
with gr.Accordion("Advanced options", open=False):
with gr.Row():
negative_prompt = gr.Textbox(
label="Negative Prompt",
info="Describe what you don't want in the image",
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
placeholder="Ugly, bad anatomy...",
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
minimum=1,
maximum=50,
value=25,
step=1,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
minimum=0.0,
maximum=10.0,
value=7.5,
step=0.1,
)
with gr.Row():
width = gr.Slider(
label="Width",
info="Width of the Image",
minimum=256,
maximum=1344,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
info="Height of the Image",
minimum=256,
maximum=1344,
step=32,
value=1024,
)
with gr.Row():
seed = gr.Slider(
value=42,
minimum=0,
maximum=MAX_SEED,
step=1,
label="Seed",
info="A starting point to initiate the generation process, put 0 for a random one",
)
num_images_per_prompt = gr.Slider(
label="Images Per Prompt",
info="Number of Images to generate with the settings",
minimum=1,
maximum=4,
step=1,
value=2,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result],
fn=generate_individual_image,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate_individual_image,
inputs=[
prompt,
negative_prompt,
num_inference_steps,
width,
height,
guidance_scale,
seed,
num_images_per_prompt,
model_choice,
],
outputs=[result],
)
demo.queue().launch(share=False)