Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,322 Bytes
0900c59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import torch
from diffusers import StableDiffusion3Pipeline, StableDiffusion2Pipeline, StableDiffusionXLBasePipeline
import gradio as gr
import os
import random
import transformers
import numpy as np
from transformers import T5Tokenizer, T5ForConditionalGeneration
import spaces
HF_TOKEN = os.getenv("HF_TOKEN")
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
MAX_SEED = np.iinfo(np.int32).max
# Initialize the pipelines for each sd model
sd3_medium_pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
)
sd3_medium_pipe.to(device)
sd2_1_pipe = StableDiffusion2Pipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16
)
sd2_1_pipe.to(device)
sdxl_pipe = StableDiffusionXLBasePipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
)
sdxl_pipe.to(device)
# superprompt-v1
tokenizer = T5Tokenizer.from_pretrained("roborovski/superprompt-v1")
model = T5ForConditionalGeneration.from_pretrained(
"roborovski/superprompt-v1", device_map="auto", torch_dtype="auto"
)
model.to(device)
# toggle visibility the enhanced prompt output
def update_visibility(enhance_prompt):
return gr.update(visible=enhance_prompt)
# Define the image generation function for the Arena tab
@spaces.GPU(duration=80)
def generate_arena_images(
prompt,
enhance_prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice_1,
model_choice_2,
progress=gr.Progress(track_tqdm=True),
):
if seed == 0:
seed = random.randint(1, 2**32 - 1)
if enhance_prompt:
transformers.set_seed(seed)
input_text = f"Expand the following prompt to add more detail: {prompt}"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
outputs = model.generate(
input_ids,
max_new_tokens=512,
repetition_penalty=1.2,
do_sample=True,
temperature=0.7,
top_p=1,
top_k=50,
)
prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
generator = torch.Generator().manual_seed(seed)
# Generate images for both models
images_1 = generate_single_image(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice_1,
generator,
)
images_2 = generate_single_image(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice_2,
generator,
)
return images_1, images_2, prompt
# Helper function to generate images for a single model
def generate_single_image(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice,
generator,
):
# Select the correct pipeline based on the model choice
if model_choice == "sd3 medium":
pipe = sd3_medium_pipe
elif model_choice == "sd2.1":
pipe = sd2_1_pipe
elif model_choice == "sdxl":
pipe = sdxl_pipe
else:
raise ValueError(f"Invalid model choice: {model_choice}")
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
height=height,
width=width,
guidance_scale=guidance_scale,
generator=generator,
num_images_per_prompt=num_images_per_prompt,
).images
return output
# Define the image generation function for the Individual tab
@spaces.GPU(duration=80)
def generate_individual_image(
prompt,
enhance_prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice,
progress=gr.Progress(track_tqdm=True),
):
if seed == 0:
seed = random.randint(1, 2**32 - 1)
if enhance_prompt:
transformers.set_seed(seed)
input_text = f"Expand the following prompt to add more detail: {prompt}"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
outputs = model.generate(
input_ids,
max_new_tokens=512,
repetition_penalty=1.2,
do_sample=True,
temperature=0.7,
top_p=1,
top_k=50,
)
prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
generator = torch.Generator().manual_seed(seed)
output = generate_single_image(
prompt,
negative_prompt,
num_inference_steps,
height,
width,
guidance_scale,
seed,
num_images_per_prompt,
model_choice,
generator,
)
return output, prompt
# Create the Gradio interface
examples = [
["A white car racing fast to the moon.", True],
["A woman in a red dress singing on top of a building.", True],
["An astronaut on mars in a futuristic cyborg suit.", True],
]
css = """
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
gr.HTML(
"""
<h1 style='text-align: center'>
Stable Diffusion Arena
</h1>
"""
)
gr.HTML(
"""
Made by <a href='https://linktr.ee/Nick088' target='_blank'>Nick088</a>
<br> <a href="https://discord.gg/osai"> <img src="https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge" alt="Discord"> </a>
"""
)
with gr.Tabs():
with gr.TabItem("Arena"):
with gr.Group():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
info="Describe the image you want",
placeholder="A cat...",
)
enhance_prompt = gr.Checkbox(
label="Prompt Enhancement with SuperPrompt-v1", value=True
)
model_choice_1 = gr.Dropdown(
label="Stable Diffusion Model 1",
choices=["sd3 medium", "sd2.1", "sdxl"],
value="sd3 medium",
)
model_choice_2 = gr.Dropdown(
label="Stable Diffusion Model 2",
choices=["sd3 medium", "sd2.1", "sdxl"],
value="sd2.1",
)
run_button = gr.Button("Run")
result_1 = gr.Gallery(label="Generated Images (Model 1)", elem_id="gallery_1")
result_2 = gr.Gallery(label="Generated Images (Model 2)", elem_id="gallery_2")
better_prompt = gr.Textbox(
label="Enhanced Prompt",
info="The output of your enhanced prompt used for the Image Generation",
visible=True,
)
enhance_prompt.change(
fn=update_visibility, inputs=enhance_prompt, outputs=better_prompt
)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
negative_prompt = gr.Textbox(
label="Negative Prompt",
info="Describe what you don't want in the image",
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
placeholder="Ugly, bad anatomy...",
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
minimum=1,
maximum=50,
value=25,
step=1,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
minimum=0.0,
maximum=10.0,
value=7.5,
step=0.1,
)
with gr.Row():
width = gr.Slider(
label="Width",
info="Width of the Image",
minimum=256,
maximum=1344,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
info="Height of the Image",
minimum=256,
maximum=1344,
step=32,
value=1024,
)
with gr.Row():
seed = gr.Slider(
value=42,
minimum=0,
maximum=MAX_SEED,
step=1,
label="Seed",
info="A starting point to initiate the generation process, put 0 for a random one",
)
num_images_per_prompt = gr.Slider(
label="Images Per Prompt",
info="Number of Images to generate with the settings",
minimum=1,
maximum=4,
step=1,
value=2,
)
gr.Examples(
examples=examples,
inputs=[prompt, enhance_prompt],
outputs=[result_1, result_2, better_prompt],
fn=generate_arena_images,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate_arena_images,
inputs=[
prompt,
enhance_prompt,
negative_prompt,
num_inference_steps,
width,
height,
guidance_scale,
seed,
num_images_per_prompt,
model_choice_1,
model_choice_2,
],
outputs=[result_1, result_2, better_prompt],
)
with gr.TabItem("Individual"):
with gr.Group():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
info="Describe the image you want",
placeholder="A cat...",
)
enhance_prompt = gr.Checkbox(
label="Prompt Enhancement with SuperPrompt-v1", value=True
)
model_choice = gr.Dropdown(
label="Stable Diffusion Model",
choices=["sd3 medium", "sd2.1", "sdxl"],
value="sd3 medium",
)
run_button = gr.Button("Run")
result = gr.Gallery(label="Generated AI Images", elem_id="gallery")
better_prompt = gr.Textbox(
label="Enhanced Prompt",
info="The output of your enhanced prompt used for the Image Generation",
visible=True,
)
enhance_prompt.change(
fn=update_visibility, inputs=enhance_prompt, outputs=better_prompt
)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
negative_prompt = gr.Textbox(
label="Negative Prompt",
info="Describe what you don't want in the image",
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
placeholder="Ugly, bad anatomy...",
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
minimum=1,
maximum=50,
value=25,
step=1,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
minimum=0.0,
maximum=10.0,
value=7.5,
step=0.1,
)
with gr.Row():
width = gr.Slider(
label="Width",
info="Width of the Image",
minimum=256,
maximum=1344,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
info="Height of the Image",
minimum=256,
maximum=1344,
step=32,
value=1024,
)
with gr.Row():
seed = gr.Slider(
value=42,
minimum=0,
maximum=MAX_SEED,
step=1,
label="Seed",
info="A starting point to initiate the generation process, put 0 for a random one",
)
num_images_per_prompt = gr.Slider(
label="Images Per Prompt",
info="Number of Images to generate with the settings",
minimum=1,
maximum=4,
step=1,
value=2,
)
gr.Examples(
examples=examples,
inputs=[prompt, enhance_prompt],
outputs=[result, better_prompt],
fn=generate_individual_image,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate_individual_image,
inputs=[
prompt,
enhance_prompt,
negative_prompt,
num_inference_steps,
width,
height,
guidance_scale,
seed,
num_images_per_prompt,
model_choice,
],
outputs=[result, better_prompt],
)
demo.queue().launch(share=False) |