File size: 25,293 Bytes
fa90792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
import torch
import logging
import torch.nn as nn
from audiosr.clap.open_clip import create_model
from audiosr.clap.training.data import get_audio_features
import torchaudio
from transformers import RobertaTokenizer, AutoTokenizer, T5EncoderModel
import torch.nn.functional as F
from audiosr.latent_diffusion.modules.audiomae.AudioMAE import Vanilla_AudioMAE
from audiosr.latent_diffusion.modules.phoneme_encoder.encoder import TextEncoder
from audiosr.latent_diffusion.util import instantiate_from_config

from transformers import AutoTokenizer, T5Config


import numpy as np

"""
The model forward function can return three types of data:
1. tensor: used directly as conditioning signal
2. dict: where there is a main key as condition, there are also other key that you can use to pass loss function and itermediate result. etc.
3. list: the length is 2, in which the first element is tensor, the second element is attntion mask.

The output shape for the cross attention condition should be:
x,x_mask = [bs, seq_len, emb_dim], [bs, seq_len]

All the returned data, in which will be used as diffusion input, will need to be in float type
"""


def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self


class PhonemeEncoder(nn.Module):
    def __init__(self, vocabs_size=41, pad_length=250, pad_token_id=None):
        super().__init__()
        """
            encoder = PhonemeEncoder(40)
            data = torch.randint(0, 39, (2, 250))
            output = encoder(data)
            import ipdb;ipdb.set_trace()
        """
        assert pad_token_id is not None

        self.device = None
        self.PAD_LENGTH = int(pad_length)
        self.pad_token_id = pad_token_id
        self.pad_token_sequence = torch.tensor([self.pad_token_id] * self.PAD_LENGTH)

        self.text_encoder = TextEncoder(
            n_vocab=vocabs_size,
            out_channels=192,
            hidden_channels=192,
            filter_channels=768,
            n_heads=2,
            n_layers=6,
            kernel_size=3,
            p_dropout=0.1,
        )

        self.learnable_positional_embedding = torch.nn.Parameter(
            torch.zeros((1, 192, self.PAD_LENGTH))
        )  # [batchsize, seqlen, padlen]
        self.learnable_positional_embedding.requires_grad = True

    # Required
    def get_unconditional_condition(self, batchsize):
        unconditional_tokens = self.pad_token_sequence.expand(
            batchsize, self.PAD_LENGTH
        )
        return self(unconditional_tokens)  # Need to return float type

    # def get_unconditional_condition(self, batchsize):

    #     hidden_state = torch.zeros((batchsize, self.PAD_LENGTH, 192)).to(self.device)
    #     attention_mask = torch.ones((batchsize, self.PAD_LENGTH)).to(self.device)
    #     return [hidden_state, attention_mask] # Need to return float type

    def _get_src_mask(self, phoneme):
        src_mask = phoneme != self.pad_token_id
        return src_mask

    def _get_src_length(self, phoneme):
        src_mask = self._get_src_mask(phoneme)
        length = torch.sum(src_mask, dim=-1)
        return length

    # def make_empty_condition_unconditional(self, src_length, text_emb, attention_mask):
    #     # src_length: [bs]
    #     # text_emb: [bs, 192, pad_length]
    #     # attention_mask: [bs, pad_length]
    #     mask = src_length[..., None, None] > 1
    #     text_emb = text_emb * mask

    #     attention_mask[src_length < 1] = attention_mask[src_length < 1] * 0.0 + 1.0
    #     return text_emb, attention_mask

    def forward(self, phoneme_idx):
        if self.device is None:
            self.device = self.learnable_positional_embedding.device
            self.pad_token_sequence = self.pad_token_sequence.to(self.device)

        phoneme_idx = phoneme_idx.to(self.device)

        src_length = self._get_src_length(phoneme_idx)
        text_emb, m, logs, text_emb_mask = self.text_encoder(phoneme_idx, src_length)
        text_emb = text_emb + self.learnable_positional_embedding

        # text_emb, text_emb_mask = self.make_empty_condition_unconditional(src_length, text_emb, text_emb_mask)

        return [
            text_emb.permute(0, 2, 1),
            text_emb_mask.squeeze(1),
        ]  # [2, 250, 192], [2, 250]


class VAEFeatureExtract(nn.Module):
    def __init__(self, first_stage_config):
        super().__init__()
        # self.tokenizer = AutoTokenizer.from_pretrained("gpt2")
        self.vae = None
        self.instantiate_first_stage(first_stage_config)
        self.device = None
        self.unconditional_cond = None

    def get_unconditional_condition(self, batchsize):
        return self.unconditional_cond.unsqueeze(0).expand(batchsize, -1, -1, -1)

    def instantiate_first_stage(self, config):
        self.vae = instantiate_from_config(config)
        self.vae.eval()
        for p in self.vae.parameters():
            p.requires_grad = False
        self.vae.train = disabled_train

    def forward(self, batch):
        assert self.vae.training == False
        if self.device is None:
            self.device = next(self.vae.parameters()).device

        with torch.no_grad():
            vae_embed = self.vae.encode(batch.unsqueeze(1)).sample()

        self.unconditional_cond = -11.4981 + vae_embed[0].clone() * 0.0

        return vae_embed.detach()


class FlanT5HiddenState(nn.Module):
    """
    llama = FlanT5HiddenState()
    data = ["","this is not an empty sentence"]
    encoder_hidden_states = llama(data)
    import ipdb;ipdb.set_trace()
    """

    def __init__(
        self, text_encoder_name="google/flan-t5-large", freeze_text_encoder=True
    ):
        super().__init__()
        self.freeze_text_encoder = freeze_text_encoder
        self.tokenizer = AutoTokenizer.from_pretrained(text_encoder_name)
        self.model = T5EncoderModel(T5Config.from_pretrained(text_encoder_name))
        if freeze_text_encoder:
            self.model.eval()
            for p in self.model.parameters():
                p.requires_grad = False
        else:
            print("=> The text encoder is learnable")

        self.empty_hidden_state_cfg = None
        self.device = None

    # Required
    def get_unconditional_condition(self, batchsize):
        param = next(self.model.parameters())
        if self.freeze_text_encoder:
            assert param.requires_grad == False

        # device = param.device
        if self.empty_hidden_state_cfg is None:
            self.empty_hidden_state_cfg, _ = self([""])

        hidden_state = torch.cat([self.empty_hidden_state_cfg] * batchsize).float()
        attention_mask = (
            torch.ones((batchsize, hidden_state.size(1)))
            .to(hidden_state.device)
            .float()
        )
        return [hidden_state, attention_mask]  # Need to return float type

    def forward(self, batch):
        param = next(self.model.parameters())
        if self.freeze_text_encoder:
            assert param.requires_grad == False

        if self.device is None:
            self.device = param.device

        # print("Manually change text")
        # for i in range(len(batch)):
        #     batch[i] = "dog barking"
        try:
            return self.encode_text(batch)
        except Exception as e:
            print(e, batch)
            logging.exception("An error occurred: %s", str(e))

    def encode_text(self, prompt):
        device = self.model.device
        batch = self.tokenizer(
            prompt,
            max_length=128,  # self.tokenizer.model_max_length
            padding=True,
            truncation=True,
            return_tensors="pt",
        )
        input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(
            device
        )
        # Get text encoding
        if self.freeze_text_encoder:
            with torch.no_grad():
                encoder_hidden_states = self.model(
                    input_ids=input_ids, attention_mask=attention_mask
                )[0]
        else:
            encoder_hidden_states = self.model(
                input_ids=input_ids, attention_mask=attention_mask
            )[0]
        return [
            encoder_hidden_states.detach(),
            attention_mask.float(),
        ]


class AudioMAEConditionCTPoolRandTFSeparated(nn.Module):
    """
    audiomae = AudioMAEConditionCTPool2x2()
    data = torch.randn((4, 1024, 128))
    output = audiomae(data)
    import ipdb;ipdb.set_trace()
    exit(0)
    """

    def __init__(
        self,
        time_pooling_factors=[1, 2, 4, 8],
        freq_pooling_factors=[1, 2, 4, 8],
        eval_time_pooling=None,
        eval_freq_pooling=None,
        mask_ratio=0.0,
        regularization=False,
        no_audiomae_mask=True,
        no_audiomae_average=False,
    ):
        super().__init__()
        self.device = None
        self.time_pooling_factors = time_pooling_factors
        self.freq_pooling_factors = freq_pooling_factors
        self.no_audiomae_mask = no_audiomae_mask
        self.no_audiomae_average = no_audiomae_average

        self.eval_freq_pooling = eval_freq_pooling
        self.eval_time_pooling = eval_time_pooling
        self.mask_ratio = mask_ratio
        self.use_reg = regularization

        self.audiomae = Vanilla_AudioMAE()
        self.audiomae.eval()
        for p in self.audiomae.parameters():
            p.requires_grad = False

    # Required
    def get_unconditional_condition(self, batchsize):
        param = next(self.audiomae.parameters())
        assert param.requires_grad == False
        device = param.device
        # time_pool, freq_pool = max(self.time_pooling_factors), max(self.freq_pooling_factors)
        time_pool, freq_pool = min(self.eval_time_pooling, 64), min(
            self.eval_freq_pooling, 8
        )
        # time_pool = self.time_pooling_factors[np.random.choice(list(range(len(self.time_pooling_factors))))]
        # freq_pool = self.freq_pooling_factors[np.random.choice(list(range(len(self.freq_pooling_factors))))]
        token_num = int(512 / (time_pool * freq_pool))
        return [
            torch.zeros((batchsize, token_num, 768)).to(device).float(),
            torch.ones((batchsize, token_num)).to(device).float(),
        ]

    def pool(self, representation, time_pool=None, freq_pool=None):
        assert representation.size(-1) == 768
        representation = representation[:, 1:, :].transpose(1, 2)
        bs, embedding_dim, token_num = representation.size()
        representation = representation.reshape(bs, embedding_dim, 64, 8)

        if self.training:
            if time_pool is None and freq_pool is None:
                time_pool = min(
                    64,
                    self.time_pooling_factors[
                        np.random.choice(list(range(len(self.time_pooling_factors))))
                    ],
                )
                freq_pool = min(
                    8,
                    self.freq_pooling_factors[
                        np.random.choice(list(range(len(self.freq_pooling_factors))))
                    ],
                )
                # freq_pool = min(8, time_pool) # TODO here I make some modification.
        else:
            time_pool, freq_pool = min(self.eval_time_pooling, 64), min(
                self.eval_freq_pooling, 8
            )

        self.avgpooling = nn.AvgPool2d(
            kernel_size=(time_pool, freq_pool), stride=(time_pool, freq_pool)
        )
        self.maxpooling = nn.MaxPool2d(
            kernel_size=(time_pool, freq_pool), stride=(time_pool, freq_pool)
        )

        pooled = (
            self.avgpooling(representation) + self.maxpooling(representation)
        ) / 2  # [bs, embedding_dim, time_token_num, freq_token_num]
        pooled = pooled.flatten(2).transpose(1, 2)
        return pooled  # [bs, token_num, embedding_dim]

    def regularization(self, x):
        assert x.size(-1) == 768
        x = F.normalize(x, p=2, dim=-1)
        return x

    # Required
    def forward(self, batch, time_pool=None, freq_pool=None):
        assert batch.size(-2) == 1024 and batch.size(-1) == 128

        if self.device is None:
            self.device = batch.device

        batch = batch.unsqueeze(1)
        with torch.no_grad():
            representation = self.audiomae(
                batch,
                mask_ratio=self.mask_ratio,
                no_mask=self.no_audiomae_mask,
                no_average=self.no_audiomae_average,
            )
            representation = self.pool(representation, time_pool, freq_pool)
            if self.use_reg:
                representation = self.regularization(representation)
            return [
                representation,
                torch.ones((representation.size(0), representation.size(1)))
                .to(representation.device)
                .float(),
            ]


class AudioMAEConditionCTPoolRand(nn.Module):
    """
    audiomae = AudioMAEConditionCTPool2x2()
    data = torch.randn((4, 1024, 128))
    output = audiomae(data)
    import ipdb;ipdb.set_trace()
    exit(0)
    """

    def __init__(
        self,
        time_pooling_factors=[1, 2, 4, 8],
        freq_pooling_factors=[1, 2, 4, 8],
        eval_time_pooling=None,
        eval_freq_pooling=None,
        mask_ratio=0.0,
        regularization=False,
        no_audiomae_mask=True,
        no_audiomae_average=False,
    ):
        super().__init__()
        self.device = None
        self.time_pooling_factors = time_pooling_factors
        self.freq_pooling_factors = freq_pooling_factors
        self.no_audiomae_mask = no_audiomae_mask
        self.no_audiomae_average = no_audiomae_average

        self.eval_freq_pooling = eval_freq_pooling
        self.eval_time_pooling = eval_time_pooling
        self.mask_ratio = mask_ratio
        self.use_reg = regularization

        self.audiomae = Vanilla_AudioMAE()
        self.audiomae.eval()
        for p in self.audiomae.parameters():
            p.requires_grad = False

    # Required
    def get_unconditional_condition(self, batchsize):
        param = next(self.audiomae.parameters())
        assert param.requires_grad == False
        device = param.device
        # time_pool, freq_pool = max(self.time_pooling_factors), max(self.freq_pooling_factors)
        time_pool, freq_pool = min(self.eval_time_pooling, 64), min(
            self.eval_freq_pooling, 8
        )
        # time_pool = self.time_pooling_factors[np.random.choice(list(range(len(self.time_pooling_factors))))]
        # freq_pool = self.freq_pooling_factors[np.random.choice(list(range(len(self.freq_pooling_factors))))]
        token_num = int(512 / (time_pool * freq_pool))
        return [
            torch.zeros((batchsize, token_num, 768)).to(device).float(),
            torch.ones((batchsize, token_num)).to(device).float(),
        ]

    def pool(self, representation, time_pool=None, freq_pool=None):
        assert representation.size(-1) == 768
        representation = representation[:, 1:, :].transpose(1, 2)
        bs, embedding_dim, token_num = representation.size()
        representation = representation.reshape(bs, embedding_dim, 64, 8)

        if self.training:
            if time_pool is None and freq_pool is None:
                time_pool = min(
                    64,
                    self.time_pooling_factors[
                        np.random.choice(list(range(len(self.time_pooling_factors))))
                    ],
                )
                # freq_pool = self.freq_pooling_factors[np.random.choice(list(range(len(self.freq_pooling_factors))))]
                freq_pool = min(8, time_pool)  # TODO here I make some modification.
        else:
            time_pool, freq_pool = min(self.eval_time_pooling, 64), min(
                self.eval_freq_pooling, 8
            )

        self.avgpooling = nn.AvgPool2d(
            kernel_size=(time_pool, freq_pool), stride=(time_pool, freq_pool)
        )
        self.maxpooling = nn.MaxPool2d(
            kernel_size=(time_pool, freq_pool), stride=(time_pool, freq_pool)
        )

        pooled = (
            self.avgpooling(representation) + self.maxpooling(representation)
        ) / 2  # [bs, embedding_dim, time_token_num, freq_token_num]
        pooled = pooled.flatten(2).transpose(1, 2)
        return pooled  # [bs, token_num, embedding_dim]

    def regularization(self, x):
        assert x.size(-1) == 768
        x = F.normalize(x, p=2, dim=-1)
        return x

    # Required
    def forward(self, batch, time_pool=None, freq_pool=None):
        assert batch.size(-2) == 1024 and batch.size(-1) == 128

        if self.device is None:
            self.device = next(self.audiomae.parameters()).device

        batch = batch.unsqueeze(1).to(self.device)
        with torch.no_grad():
            representation = self.audiomae(
                batch,
                mask_ratio=self.mask_ratio,
                no_mask=self.no_audiomae_mask,
                no_average=self.no_audiomae_average,
            )
            representation = self.pool(representation, time_pool, freq_pool)
            if self.use_reg:
                representation = self.regularization(representation)
            return [
                representation,
                torch.ones((representation.size(0), representation.size(1)))
                .to(representation.device)
                .float(),
            ]


class CLAPAudioEmbeddingClassifierFreev2(nn.Module):
    def __init__(
        self,
        pretrained_path="",
        enable_cuda=False,
        sampling_rate=16000,
        embed_mode="audio",
        amodel="HTSAT-base",
        unconditional_prob=0.1,
        random_mute=False,
        max_random_mute_portion=0.5,
        training_mode=True,
    ):
        super().__init__()
        self.device = "cpu"  # The model itself is on cpu
        self.cuda = enable_cuda
        self.precision = "fp32"
        self.amodel = amodel  # or 'PANN-14'
        self.tmodel = "roberta"  # the best text encoder in our training
        self.enable_fusion = False  # False if you do not want to use the fusion model
        self.fusion_type = "aff_2d"
        self.pretrained = pretrained_path
        self.embed_mode = embed_mode
        self.embed_mode_orig = embed_mode
        self.sampling_rate = sampling_rate
        self.unconditional_prob = unconditional_prob
        self.random_mute = random_mute
        self.tokenize = RobertaTokenizer.from_pretrained("roberta-base")
        self.max_random_mute_portion = max_random_mute_portion
        self.training_mode = training_mode
        self.model, self.model_cfg = create_model(
            self.amodel,
            self.tmodel,
            self.pretrained,
            precision=self.precision,
            device=self.device,
            enable_fusion=self.enable_fusion,
            fusion_type=self.fusion_type,
        )
        self.model = self.model.to(self.device)
        audio_cfg = self.model_cfg["audio_cfg"]
        self.mel_transform = torchaudio.transforms.MelSpectrogram(
            sample_rate=audio_cfg["sample_rate"],
            n_fft=audio_cfg["window_size"],
            win_length=audio_cfg["window_size"],
            hop_length=audio_cfg["hop_size"],
            center=True,
            pad_mode="reflect",
            power=2.0,
            norm=None,
            onesided=True,
            n_mels=64,
            f_min=audio_cfg["fmin"],
            f_max=audio_cfg["fmax"],
        )
        for p in self.model.parameters():
            p.requires_grad = False
        self.unconditional_token = None
        self.model.eval()

    def get_unconditional_condition(self, batchsize):
        self.unconditional_token = self.model.get_text_embedding(
            self.tokenizer(["", ""])
        )[0:1]
        return torch.cat([self.unconditional_token.unsqueeze(0)] * batchsize, dim=0)

    def batch_to_list(self, batch):
        ret = []
        for i in range(batch.size(0)):
            ret.append(batch[i])
        return ret

    def make_decision(self, probability):
        if float(torch.rand(1)) < probability:
            return True
        else:
            return False

    def random_uniform(self, start, end):
        val = torch.rand(1).item()
        return start + (end - start) * val

    def _random_mute(self, waveform):
        # waveform: [bs, t-steps]
        t_steps = waveform.size(-1)
        for i in range(waveform.size(0)):
            mute_size = int(
                self.random_uniform(0, end=int(t_steps * self.max_random_mute_portion))
            )
            mute_start = int(self.random_uniform(0, t_steps - mute_size))
            waveform[i, mute_start : mute_start + mute_size] = 0
        return waveform

    def cos_similarity(self, waveform, text):
        # waveform: [bs, t_steps]
        original_embed_mode = self.embed_mode
        with torch.no_grad():
            self.embed_mode = "audio"
            # MPS currently does not support ComplexFloat dtype and operator 'aten::_fft_r2c'
            if self.cuda:
                audio_emb = self(waveform.cuda())
            else:
                audio_emb = self(waveform.to("cpu"))
            self.embed_mode = "text"
            text_emb = self(text)
            similarity = F.cosine_similarity(audio_emb, text_emb, dim=2)
        self.embed_mode = original_embed_mode
        return similarity.squeeze()

    def build_unconditional_emb(self):
        self.unconditional_token = self.model.get_text_embedding(
            self.tokenizer(["", ""])
        )[0:1]

    def forward(self, batch):
        # If you want this conditioner to be unconditional, set self.unconditional_prob = 1.0
        # If you want this conditioner to be fully conditional, set self.unconditional_prob = 0.0
        if self.model.training == True and not self.training_mode:
            print(
                "The pretrained CLAP model should always be in eval mode. Reloading model just in case you change the parameters."
            )
            self.model, self.model_cfg = create_model(
                self.amodel,
                self.tmodel,
                self.pretrained,
                precision=self.precision,
                device="cuda" if self.cuda else "cpu",
                enable_fusion=self.enable_fusion,
                fusion_type=self.fusion_type,
            )
            for p in self.model.parameters():
                p.requires_grad = False
            self.model.eval()

        if self.unconditional_token is None:
            self.build_unconditional_emb()

        # if(self.training_mode):
        #     assert self.model.training == True
        # else:
        #     assert self.model.training == False

        # the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
        if self.embed_mode == "audio":
            if not self.training:
                print("INFO: clap model calculate the audio embedding as condition")
            with torch.no_grad():
                # assert (
                #     self.sampling_rate == 16000
                # ), "We only support 16000 sampling rate"

                # if self.random_mute:
                #     batch = self._random_mute(batch)
                # batch: [bs, 1, t-samples]
                if self.sampling_rate != 48000:
                    batch = torchaudio.functional.resample(
                        batch, orig_freq=self.sampling_rate, new_freq=48000
                    )
                audio_data = batch.squeeze(1).to("cpu")
                self.mel_transform = self.mel_transform.to(audio_data.device)
                mel = self.mel_transform(audio_data)
                audio_dict = get_audio_features(
                    audio_data,
                    mel,
                    480000,
                    data_truncating="fusion",
                    data_filling="repeatpad",
                    audio_cfg=self.model_cfg["audio_cfg"],
                )
                # [bs, 512]
                embed = self.model.get_audio_embedding(audio_dict)
        elif self.embed_mode == "text":
            with torch.no_grad():
                # the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
                text_data = self.tokenizer(batch)

                if isinstance(batch, str) or (
                    isinstance(batch, list) and len(batch) == 1
                ):
                    for key in text_data.keys():
                        text_data[key] = text_data[key].unsqueeze(0)

                embed = self.model.get_text_embedding(text_data)

        embed = embed.unsqueeze(1)
        for i in range(embed.size(0)):
            if self.make_decision(self.unconditional_prob):
                embed[i] = self.unconditional_token
        # embed = torch.randn((batch.size(0), 1, 512)).type_as(batch)
        return embed.detach()

    def tokenizer(self, text):
        result = self.tokenize(
            text,
            padding="max_length",
            truncation=True,
            max_length=512,
            return_tensors="pt",
        )
        return {k: v.squeeze(0) for k, v in result.items()}