File size: 14,464 Bytes
92d5846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import time
import requests
import pathlib
from io import BytesIO
from playsound import playsound
from webscout import exceptions
from webscout.AIbase import TTSProvider
from webscout.litagent import LitAgent
from concurrent.futures import ThreadPoolExecutor, as_completed
"""
Text processing utilities for TTS providers.
"""
from typing import List, Dict, Tuple, Set, Optional, Pattern
import re


class SentenceTokenizer:
    """Advanced sentence tokenizer with support for complex cases and proper formatting."""
    
    def __init__(self) -> None:
        # Common abbreviations by category
        self.TITLES: Set[str] = {
            'mr', 'mrs', 'ms', 'dr', 'prof', 'rev', 'sr', 'jr', 'esq',
            'hon', 'pres', 'gov', 'atty', 'supt', 'det', 'rev', 'col','maj', 'gen', 'capt', 'cmdr',
            'lt', 'sgt', 'cpl', 'pvt'
        }
        
        self.ACADEMIC: Set[str] = {
            'ph.d', 'phd', 'm.d', 'md', 'b.a', 'ba', 'm.a', 'ma', 'd.d.s', 'dds',
            'm.b.a', 'mba', 'b.sc', 'bsc', 'm.sc', 'msc', 'llb', 'll.b', 'bl'
        }
        
        self.ORGANIZATIONS: Set[str] = {
            'inc', 'ltd', 'co', 'corp', 'llc', 'llp', 'assn', 'bros', 'plc', 'cos',
            'intl', 'dept', 'est', 'dist', 'mfg', 'div'
        }
        
        self.MONTHS: Set[str] = {
            'jan', 'feb', 'mar', 'apr', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'
        }
        
        self.UNITS: Set[str] = {
            'oz', 'pt', 'qt', 'gal', 'ml', 'cc', 'km', 'cm', 'mm', 'ft', 'in',
            'kg', 'lb', 'lbs', 'hz', 'khz', 'mhz', 'ghz', 'kb', 'mb', 'gb', 'tb'
        }
        
        self.TECHNOLOGY: Set[str] = {
            'v', 'ver', 'app', 'sys', 'dir', 'exe', 'lib', 'api', 'sdk', 'url',
            'cpu', 'gpu', 'ram', 'rom', 'hdd', 'ssd', 'lan', 'wan', 'sql', 'html'
        }
        
        self.MISC: Set[str] = {
            'vs', 'etc', 'ie', 'eg', 'no', 'al', 'ca', 'cf', 'pp', 'est', 'st',
            'approx', 'appt', 'apt', 'dept', 'depts', 'min', 'max', 'avg'
        }

        # Combine all abbreviations
        self.all_abbreviations: Set[str] = (
            self.TITLES | self.ACADEMIC | self.ORGANIZATIONS |
            self.MONTHS | self.UNITS | self.TECHNOLOGY | self.MISC
        )

        # Special patterns
        self.ELLIPSIS: str = r'\.{2,}|…'
        self.URL_PATTERN: str = (
            r'(?:https?:\/\/|www\.)[\w\-\.]+\.[a-zA-Z]{2,}(?:\/[^\s]*)?'
        )
        self.EMAIL_PATTERN: str = r'[\w\.-]+@[\w\.-]+\.\w+'
        self.NUMBER_PATTERN: str = (
            r'\d+(?:\.\d+)?(?:%|Β°|km|cm|mm|m|kg|g|lb|ft|in|mph|kmh|hz|mhz|ghz)?'
        )
        
        # Quote and bracket pairs
        self.QUOTE_PAIRS: Dict[str, str] = {
            '"': '"', "'": "'", '"': '"', "γ€Œ": "」", "γ€Ž": "』",
            "Β«": "Β»", "β€Ή": "β€Ί", "'": "'", "β€š": "'"
        }
        
        self.BRACKETS: Dict[str, str] = {
            '(': ')', '[': ']', '{': '}', '⟨': '⟩', 'γ€Œ': '」',
            'γ€Ž': '』', '【': '】', 'γ€–': 'γ€—', 'ο½’': 'ο½£'
        }

        # Compile regex patterns
        self._compile_patterns()

    def _compile_patterns(self) -> None:
        """Compile regex patterns for better performance."""
        # Pattern for finding potential sentence boundaries
        self.SENTENCE_END: Pattern = re.compile(
            r'''
            # Group for sentence endings
            (?:
                # Standard endings with optional quotes/brackets
                (?<=[.!?])[\"\'\)\]\}»›」』\s]*
                
                # Ellipsis
                |(?:\.{2,}|…)
                
                # Asian-style endings
                |(?<=[γ€‚οΌοΌŸγ€γ€γ€‘\s])
            )
            
            # Must be followed by whitespace and capital letter or number
            (?=\s+(?:[A-Z0-9]|["'({[\[γ€Œγ€Žγ€Šβ€Ήγ€ˆ][A-Z]))
            ''',
            re.VERBOSE
        )

        # Pattern for abbreviations
        abbrev_pattern = '|'.join(re.escape(abbr) for abbr in self.all_abbreviations)
        self.ABBREV_PATTERN: Pattern = re.compile(
            fr'\b(?:{abbrev_pattern})\.?',
            re.IGNORECASE
        )

    def _protect_special_cases(self, text: str) -> Tuple[str, Dict[str, str]]:
        """Protect URLs, emails, and other special cases from being split."""
        protected = text
        placeholders: Dict[str, str] = {}
        counter = 0

        # Protect URLs and emails
        for pattern in [self.URL_PATTERN, self.EMAIL_PATTERN]:
            for match in re.finditer(pattern, protected):
                placeholder = f'__PROTECTED_{counter}__'
                placeholders[placeholder] = match.group()
                protected = protected.replace(match.group(), placeholder)
                counter += 1

        # Protect quoted content
        stack = []
        protected_chars = list(protected)
        i = 0
        while i < len(protected_chars):
            char = protected_chars[i]
            if char in self.QUOTE_PAIRS:
                stack.append((char, i))
            elif stack and char == self.QUOTE_PAIRS[stack[-1][0]]:
                start_quote, start_idx = stack.pop()
                content = ''.join(protected_chars[start_idx:i + 1])
                placeholder = f'__PROTECTED_{counter}__'
                placeholders[placeholder] = content
                protected_chars[start_idx:i + 1] = list(placeholder)
                counter += 1
            i += 1

        return ''.join(protected_chars), placeholders

    def _restore_special_cases(self, text: str, placeholders: Dict[str, str]) -> str:
        """Restore protected content."""
        restored = text
        for placeholder, original in placeholders.items():
            restored = restored.replace(placeholder, original)
        return restored

    def _handle_abbreviations(self, text: str) -> str:
        """Handle abbreviations to prevent incorrect sentence splitting."""
        def replace_abbrev(match: re.Match) -> str:
            abbr = match.group().lower().rstrip('.')
            if abbr in self.all_abbreviations:
                return match.group().replace('.', '__DOT__')
            return match.group()

        return self.ABBREV_PATTERN.sub(replace_abbrev, text)

    def _normalize_whitespace(self, text: str) -> str:
        """Normalize whitespace while preserving paragraph breaks."""
        # Replace multiple newlines with special marker
        text = re.sub(r'\n\s*\n', ' __PARA__ ', text)
        # Normalize remaining whitespace
        text = re.sub(r'\s+', ' ', text)
        return text.strip()

    def _restore_formatting(self, sentences: List[str]) -> List[str]:
        """Restore original formatting and clean up sentences."""
        restored = []
        for sentence in sentences:
            # Restore dots in abbreviations
            sentence = sentence.replace('__DOT__', '.')
            
            # Restore paragraph breaks
            sentence = sentence.replace('__PARA__', '\n\n')
            
            # Clean up whitespace
            sentence = re.sub(r'\s+', ' ', sentence).strip()
            
            # Capitalize first letter if it's lowercase and not an abbreviation
            words = sentence.split()
            if words and words[0].lower() not in self.all_abbreviations:
                sentence = sentence[0].upper() + sentence[1:]
            
            if sentence:
                restored.append(sentence)
        
        return restored

    def tokenize(self, text: str) -> List[str]:
        """
        Split text into sentences while handling complex cases.
        
        Args:
            text (str): Input text to split into sentences.
            
        Returns:
            List[str]: List of properly formatted sentences.
        """
        if not text or not text.strip():
            return []

        # Step 1: Protect special cases
        protected_text, placeholders = self._protect_special_cases(text)
        
        # Step 2: Normalize whitespace
        protected_text = self._normalize_whitespace(protected_text)
        
        # Step 3: Handle abbreviations
        protected_text = self._handle_abbreviations(protected_text)
        
        # Step 4: Split into potential sentences
        potential_sentences = self.SENTENCE_END.split(protected_text)
        
        # Step 5: Process and restore formatting
        sentences = self._restore_formatting(potential_sentences)
        
        # Step 6: Restore special cases
        sentences = [self._restore_special_cases(s, placeholders) for s in sentences]
        
        # Step 7: Post-process sentences
        final_sentences = []
        current_sentence = []
        
        for sentence in sentences:
            # Skip empty sentences
            if not sentence.strip():
                continue
                
            # Check if sentence might be continuation of previous
            if current_sentence and sentence[0].islower():
                current_sentence.append(sentence)
            else:
                if current_sentence:
                    final_sentences.append(' '.join(current_sentence))
                current_sentence = [sentence]
        
        # Add last sentence if exists
        if current_sentence:
            final_sentences.append(' '.join(current_sentence))
        
        return final_sentences


def split_sentences(text: str) -> List[str]:
    """
    Convenience function to split text into sentences using SentenceTokenizer.
    
    Args:
        text (str): Input text to split into sentences.
    
    Returns:
        List[str]: List of properly formatted sentences.
    """
    tokenizer = SentenceTokenizer()
    return tokenizer.tokenize(text)


class ElevenlabsTTS(TTSProvider): 
    """
    Text-to-speech provider using the ElevenlabsTTS API.
    """
    # Request headers
    headers: dict[str, str] = {
        "User-Agent": LitAgent().random()
    }
    cache_dir = pathlib.Path("./audio_cache")
    all_voices: dict[str, str] = {"Brian": "nPczCjzI2devNBz1zQrb", "Alice":"Xb7hH8MSUJpSbSDYk0k2", "Bill":"pqHfZKP75CvOlQylNhV4", "Callum":"N2lVS1w4EtoT3dr4eOWO", "Charlie":"IKne3meq5aSn9XLyUdCD", "Charlotte":"XB0fDUnXU5powFXDhCwa", "Chris":"iP95p4xoKVk53GoZ742B", "Daniel":"onwK4e9ZLuTAKqWW03F9", "Eric":"cjVigY5qzO86Huf0OWal", "George":"JBFqnCBsd6RMkjVDRZzb", "Jessica":"cgSgspJ2msm6clMCkdW9", "Laura":"FGY2WhTYpPnrIDTdsKH5", "Liam":"TX3LPaxmHKxFdv7VOQHJ", "Lily":"pFZP5JQG7iQjIQuC4Bku", "Matilda":"XrExE9yKIg1WjnnlVkGX", "Sarah":"EXAVITQu4vr4xnSDxMaL", "Will":"bIHbv24MWmeRgasZH58o", "Neal":"Zp1aWhL05Pi5BkhizFC3"}

    def __init__(self, timeout: int = 20, proxies: dict = None):
        """Initializes the ElevenlabsTTS TTS client."""
        self.session = requests.Session()
        self.session.headers.update(self.headers)
        if proxies:
            self.session.proxies.update(proxies)
        self.timeout = timeout
        self.params = {'allow_unauthenticated': '1'}

    def tts(self, text: str, voice: str = "Brian", verbose:bool = True) -> str:
        """
        Converts text to speech using the ElevenlabsTTS API and saves it to a file.
        """
        assert (
            voice in self.all_voices
        ), f"Voice '{voice}' not one of [{', '.join(self.all_voices.keys())}]"

        filename = self.cache_dir / f"{int(time.time())}.mp3"  

        # Split text into sentences
        sentences = split_sentences(text)

        # Function to request audio for each chunk
        def generate_audio_for_chunk(part_text: str, part_number: int):
            while True:
                try:
                    json_data = {'text': part_text, 'model_id': 'eleven_multilingual_v2'}
                    response = self.session.post(f'https://api.elevenlabs.io/v1/text-to-speech/{self.all_voices[voice]}',params=self.params, headers=self.headers, json=json_data, timeout=self.timeout)
                    response.raise_for_status()

                    # Create the audio_cache directory if it doesn't exist
                    self.cache_dir.mkdir(parents=True, exist_ok=True) 

                    # Check if the request was successful
                    if response.ok and response.status_code == 200:
                        return part_number, response.content
                    else:
                        raise exceptions.FailedToGenerateResponseError(
                            f"Failed to generate audio for chunk {part_number}: {response.status_code}"
                        )
                except requests.RequestException as e:
                    time.sleep(1)
                    continue

        try:
            # Using ThreadPoolExecutor to handle requests concurrently
            with ThreadPoolExecutor() as executor:
                futures = {executor.submit(generate_audio_for_chunk, sentence.strip(), chunk_num): chunk_num 
                        for chunk_num, sentence in enumerate(sentences, start=1)}
                
                # Dictionary to store results with order preserved
                audio_chunks = {}

                for future in as_completed(futures):
                    chunk_num = futures[future]
                    try:
                        part_number, audio_data = future.result()
                        audio_chunks[part_number] = audio_data
                    except Exception as e:
                        raise exceptions.FailedToGenerateResponseError(
                            f"Failed to generate audio for chunk {chunk_num}: {e}"
                        )

            # Combine audio chunks in the correct sequence
            combined_audio = BytesIO()
            for part_number in sorted(audio_chunks.keys()):
                combined_audio.write(audio_chunks[part_number])

            # Save the combined audio data to a single file
            with open(filename, 'wb') as f:
                f.write(combined_audio.getvalue())
            return filename.as_posix()

        except requests.exceptions.RequestException as e:
            raise exceptions.FailedToGenerateResponseError(
                f"Failed to perform the operation: {e}"
            )
        

# Example usage
if __name__ == "__main__":
    elevenlabs = ElevenlabsTTS()
    text = "This is a test of the ElevenlabsTTS text-to-speech API. It supports multiple sentences and advanced logging."

    audio_file = elevenlabs.tts(text, voice="Brian")