Spaces:
Runtime error
Runtime error
Create cataract.py
Browse files- cataract.py +296 -0
cataract.py
ADDED
|
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 5 |
+
from ultralytics import YOLO
|
| 6 |
+
import sqlite3
|
| 7 |
+
from io import BytesIO
|
| 8 |
+
from scipy.stats import norm
|
| 9 |
+
|
| 10 |
+
# Load YOLO models
|
| 11 |
+
try:
|
| 12 |
+
yolo_model_cataract = YOLO('best-cataract-seg.pt')
|
| 13 |
+
yolo_model_object_detection = YOLO('best-cataract-od.pt')
|
| 14 |
+
print("YOLO models loaded successfully.")
|
| 15 |
+
except Exception as e:
|
| 16 |
+
print(f"Error loading YOLO models: {e}")
|
| 17 |
+
|
| 18 |
+
def calculate_ratios(red_values, green_values, blue_values, total_pixels):
|
| 19 |
+
if total_pixels == 0:
|
| 20 |
+
return 0, 0, 0
|
| 21 |
+
|
| 22 |
+
red_ratio = np.sum(red_values) / total_pixels
|
| 23 |
+
green_ratio = np.sum(green_values) / total_pixels
|
| 24 |
+
blue_ratio = np.sum(blue_values) / total_pixels
|
| 25 |
+
|
| 26 |
+
total_ratio = red_ratio + green_ratio + blue_ratio
|
| 27 |
+
|
| 28 |
+
if total_ratio > 0:
|
| 29 |
+
red_quantity = (red_ratio / total_ratio) * 255
|
| 30 |
+
green_quantity = (green_ratio / total_ratio) * 255
|
| 31 |
+
blue_quantity = (blue_ratio / total_ratio) * 255
|
| 32 |
+
else:
|
| 33 |
+
red_quantity, green_quantity, blue_quantity = 0, 0, 0
|
| 34 |
+
|
| 35 |
+
return red_quantity, green_quantity, blue_quantity
|
| 36 |
+
|
| 37 |
+
def cataract_staging(red_quantity, green_quantity, blue_quantity):
|
| 38 |
+
# Assuming you have already defined your mean and std for each class and each RGB channel
|
| 39 |
+
# Example mean and std based on earlier discussion
|
| 40 |
+
mean_mature_red = 73.37
|
| 41 |
+
std_mature_red = (90.12 - 41.49) / 4
|
| 42 |
+
mean_mature_green = 89.48
|
| 43 |
+
std_mature_green = (97.67 - 83.39) / 4
|
| 44 |
+
mean_mature_blue = 92.15
|
| 45 |
+
std_mature_blue = (117.82 - 75.37) / 4
|
| 46 |
+
|
| 47 |
+
mean_normal_red = 67.84
|
| 48 |
+
std_normal_red = (107.02 - 56.19) / 4
|
| 49 |
+
mean_normal_green = 84.85
|
| 50 |
+
std_normal_green = (89.89 - 80.74) / 4
|
| 51 |
+
mean_normal_blue = 102.31
|
| 52 |
+
std_normal_blue = (111.34 - 65.58) / 4
|
| 53 |
+
|
| 54 |
+
mean_immature_red = 68.83
|
| 55 |
+
std_immature_red = (85.95 - 41.49) / 4
|
| 56 |
+
mean_immature_green = 89.43
|
| 57 |
+
std_immature_green = (97.67 - 83.39) / 4
|
| 58 |
+
mean_immature_blue = 96.74
|
| 59 |
+
std_immature_blue = (117.82 - 78.41) / 4
|
| 60 |
+
|
| 61 |
+
# Calculate likelihoods for each class
|
| 62 |
+
likelihood_mature = (
|
| 63 |
+
norm.pdf(red_quantity, mean_mature_red, std_mature_red) *
|
| 64 |
+
norm.pdf(green_quantity, mean_mature_green, std_mature_green) *
|
| 65 |
+
norm.pdf(blue_quantity, mean_mature_blue, std_mature_blue)
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
likelihood_normal = (
|
| 69 |
+
norm.pdf(red_quantity, mean_normal_red, std_normal_red) *
|
| 70 |
+
norm.pdf(green_quantity, mean_normal_green, std_normal_green) *
|
| 71 |
+
norm.pdf(blue_quantity, mean_normal_blue, std_normal_blue)
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
likelihood_immature = (
|
| 75 |
+
norm.pdf(red_quantity, mean_immature_red, std_immature_red) *
|
| 76 |
+
norm.pdf(green_quantity, mean_immature_green, std_immature_green) *
|
| 77 |
+
norm.pdf(blue_quantity, mean_immature_blue, std_immature_blue)
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# Define prior probabilities (assuming equal prior for simplicity)
|
| 81 |
+
prior_mature = 1/3
|
| 82 |
+
prior_normal = 1/3
|
| 83 |
+
prior_immature = 1/3
|
| 84 |
+
|
| 85 |
+
# Apply Bayes' theorem to compute posterior probabilities
|
| 86 |
+
posterior_mature = likelihood_mature * prior_mature
|
| 87 |
+
posterior_normal = likelihood_normal * prior_normal
|
| 88 |
+
posterior_immature = likelihood_immature * prior_immature
|
| 89 |
+
|
| 90 |
+
# Determine the stage based on maximum posterior probability
|
| 91 |
+
stages = {
|
| 92 |
+
posterior_mature: "Mature",
|
| 93 |
+
posterior_normal: "Normal",
|
| 94 |
+
posterior_immature: "Immature"
|
| 95 |
+
}
|
| 96 |
+
max_posterior = max(posterior_mature, posterior_normal, posterior_immature)
|
| 97 |
+
stage = stages[max_posterior]
|
| 98 |
+
|
| 99 |
+
return stage
|
| 100 |
+
|
| 101 |
+
def add_watermark(image):
|
| 102 |
+
try:
|
| 103 |
+
logo = Image.open('image-logo.png').convert("RGBA")
|
| 104 |
+
image = image.convert("RGBA")
|
| 105 |
+
|
| 106 |
+
# Resize logo
|
| 107 |
+
basewidth = 100
|
| 108 |
+
wpercent = (basewidth / float(logo.size[0]))
|
| 109 |
+
hsize = int((float(wpercent) * logo.size[1]))
|
| 110 |
+
logo = logo.resize((basewidth, hsize), Image.LANCZOS)
|
| 111 |
+
|
| 112 |
+
# Position logo
|
| 113 |
+
position = (image.width - logo.width - 10, image.height - logo.height - 10)
|
| 114 |
+
|
| 115 |
+
# Composite image
|
| 116 |
+
transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
|
| 117 |
+
transparent.paste(image, (0, 0))
|
| 118 |
+
transparent.paste(logo, position, mask=logo)
|
| 119 |
+
|
| 120 |
+
return transparent.convert("RGB")
|
| 121 |
+
except Exception as e:
|
| 122 |
+
print(f"Error adding watermark: {e}")
|
| 123 |
+
return image
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def predict_and_visualize(image):
|
| 127 |
+
try:
|
| 128 |
+
pil_image = Image.fromarray(image.astype('uint8'), 'RGB')
|
| 129 |
+
orig_size = pil_image.size
|
| 130 |
+
results = yolo_model_cataract(pil_image)
|
| 131 |
+
|
| 132 |
+
raw_response = str(results)
|
| 133 |
+
masked_image = np.array(pil_image)
|
| 134 |
+
mask_image = np.zeros_like(masked_image)
|
| 135 |
+
|
| 136 |
+
red_quantity, green_quantity, blue_quantity = 0, 0, 0
|
| 137 |
+
total_pixels = 0
|
| 138 |
+
|
| 139 |
+
if len(results) > 0:
|
| 140 |
+
result = results[0]
|
| 141 |
+
if hasattr(result, 'masks') and result.masks is not None and len(result.masks) > 0:
|
| 142 |
+
mask = np.array(result.masks.data.cpu().squeeze().numpy())
|
| 143 |
+
mask_resized = np.array(Image.fromarray(mask).resize(orig_size, Image.NEAREST))
|
| 144 |
+
|
| 145 |
+
red_mask = np.zeros_like(masked_image)
|
| 146 |
+
red_mask[mask_resized > 0.5] = [255, 0, 0]
|
| 147 |
+
alpha = 0.5
|
| 148 |
+
blended_image = cv2.addWeighted(masked_image, 1 - alpha, red_mask, alpha, 0)
|
| 149 |
+
|
| 150 |
+
pupil_pixels = np.array(pil_image)[mask_resized > 0.5]
|
| 151 |
+
total_pixels = pupil_pixels.shape[0]
|
| 152 |
+
|
| 153 |
+
red_values = pupil_pixels[:, 0]
|
| 154 |
+
green_values = pupil_pixels[:, 1]
|
| 155 |
+
blue_values = pupil_pixels[:, 2]
|
| 156 |
+
|
| 157 |
+
red_quantity, green_quantity, blue_quantity = calculate_ratios(red_values, green_values, blue_values, total_pixels)
|
| 158 |
+
stage = cataract_staging(red_quantity, green_quantity, blue_quantity)
|
| 159 |
+
|
| 160 |
+
# Add text to the blended image
|
| 161 |
+
combined_pil_image = Image.fromarray(blended_image)
|
| 162 |
+
draw = ImageDraw.Draw(combined_pil_image)
|
| 163 |
+
|
| 164 |
+
# Load a larger font (adjust the size as needed)
|
| 165 |
+
font_size = 48 # Example font size
|
| 166 |
+
try:
|
| 167 |
+
font = ImageFont.truetype("font.ttf", size=font_size)
|
| 168 |
+
except IOError:
|
| 169 |
+
font = ImageFont.load_default()
|
| 170 |
+
print("Error: cannot open resource, using default font.")
|
| 171 |
+
|
| 172 |
+
text = f"Red quantity: {red_quantity:.2f}\nGreen quantity: {green_quantity:.2f}\nBlue quantity: {blue_quantity:.2f}\nStage: {stage}"
|
| 173 |
+
|
| 174 |
+
# Calculate text bounding box
|
| 175 |
+
text_bbox = draw.textbbox((0, 0), text, font=font)
|
| 176 |
+
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
|
| 177 |
+
text_x = 20
|
| 178 |
+
text_y = 40
|
| 179 |
+
padding = 10
|
| 180 |
+
|
| 181 |
+
# Draw a filled rectangle for the background
|
| 182 |
+
draw.rectangle(
|
| 183 |
+
[text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding],
|
| 184 |
+
fill="black"
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
# Draw text on top of the rectangle
|
| 188 |
+
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
|
| 189 |
+
|
| 190 |
+
# Add watermark to the image
|
| 191 |
+
combined_pil_image_with_watermark = add_watermark(combined_pil_image)
|
| 192 |
+
|
| 193 |
+
return np.array(combined_pil_image_with_watermark), red_quantity, green_quantity, blue_quantity, raw_response, stage
|
| 194 |
+
|
| 195 |
+
return image, 0, 0, 0, "No mask detected.", "Unknown"
|
| 196 |
+
|
| 197 |
+
except Exception as e:
|
| 198 |
+
print("Error:", e)
|
| 199 |
+
return np.zeros_like(image), 0, 0, 0, str(e), "Error"
|
| 200 |
+
|
| 201 |
+
def check_duplicate_entry(conn, red_quantity, green_quantity, blue_quantity, stage):
|
| 202 |
+
cursor = conn.cursor()
|
| 203 |
+
query = '''SELECT COUNT(*) FROM cataract_results WHERE red_quantity=? AND green_quantity=? AND blue_quantity=? AND stage=?'''
|
| 204 |
+
cursor.execute(query, (red_quantity, green_quantity, blue_quantity, stage))
|
| 205 |
+
count = cursor.fetchone()[0]
|
| 206 |
+
return count > 0
|
| 207 |
+
|
| 208 |
+
def save_cataract_prediction_to_db(image, red_quantity, green_quantity, blue_quantity, stage):
|
| 209 |
+
database = "cataract_results.db"
|
| 210 |
+
conn = create_connection(database)
|
| 211 |
+
if conn:
|
| 212 |
+
create_cataract_table(conn)
|
| 213 |
+
|
| 214 |
+
# Check for duplicate entries
|
| 215 |
+
if check_duplicate_entry(conn, red_quantity, green_quantity, blue_quantity, stage):
|
| 216 |
+
conn.close()
|
| 217 |
+
return "Duplicate entry found, not saving.", "Duplicate entry detected."
|
| 218 |
+
|
| 219 |
+
sql = '''INSERT INTO cataract_results(image, red_quantity, green_quantity, blue_quantity, stage) VALUES(?,?,?,?,?)'''
|
| 220 |
+
cur = conn.cursor()
|
| 221 |
+
|
| 222 |
+
# Convert the image to bytes
|
| 223 |
+
buffered = BytesIO()
|
| 224 |
+
image.save(buffered, format="PNG")
|
| 225 |
+
img_bytes = buffered.getvalue()
|
| 226 |
+
|
| 227 |
+
cur.execute(sql, (img_bytes, red_quantity, green_quantity, blue_quantity, stage))
|
| 228 |
+
conn.commit()
|
| 229 |
+
conn.close()
|
| 230 |
+
return "Data saved successfully", f"Red: {red_quantity}, Green: {green_quantity}, Blue: {blue_quantity}, Stage: {stage}"
|
| 231 |
+
|
| 232 |
+
return "Failed to save data", "No connection to the database."
|
| 233 |
+
|
| 234 |
+
def combined_prediction(image):
|
| 235 |
+
blended_image, red_quantity, green_quantity, blue_quantity, raw_response, stage = predict_and_visualize(image)
|
| 236 |
+
save_message, debug_info = save_cataract_prediction_to_db(Image.fromarray(blended_image), red_quantity, green_quantity, blue_quantity, stage)
|
| 237 |
+
return blended_image, red_quantity, green_quantity, blue_quantity, raw_response, stage, save_message, debug_info
|
| 238 |
+
|
| 239 |
+
def create_connection(db_file):
|
| 240 |
+
""" Create a database connection to the SQLite database """
|
| 241 |
+
conn = None
|
| 242 |
+
try:
|
| 243 |
+
conn = sqlite3.connect(db_file)
|
| 244 |
+
return conn
|
| 245 |
+
except sqlite3.Error as e:
|
| 246 |
+
print(e)
|
| 247 |
+
return conn
|
| 248 |
+
|
| 249 |
+
def create_cataract_table(conn):
|
| 250 |
+
""" Create the cataract results table if it does not exist """
|
| 251 |
+
create_table_sql = """ CREATE TABLE IF NOT EXISTS cataract_results (
|
| 252 |
+
id integer PRIMARY KEY,
|
| 253 |
+
image blob,
|
| 254 |
+
red_quantity real,
|
| 255 |
+
green_quantity real,
|
| 256 |
+
blue_quantity real,
|
| 257 |
+
stage text
|
| 258 |
+
); """
|
| 259 |
+
try:
|
| 260 |
+
cursor = conn.cursor()
|
| 261 |
+
cursor.execute(create_table_sql)
|
| 262 |
+
except sqlite3.Error as e:
|
| 263 |
+
print(e)
|
| 264 |
+
|
| 265 |
+
def predict_object_detection(image):
|
| 266 |
+
try:
|
| 267 |
+
image_np = np.array(image)
|
| 268 |
+
results = yolo_model_object_detection(image_np)
|
| 269 |
+
|
| 270 |
+
image_with_boxes = image_np.copy()
|
| 271 |
+
raw_predictions = []
|
| 272 |
+
for result in results[0].boxes:
|
| 273 |
+
label = "Normal" if result.cls.item() == 1 else "Cataract"
|
| 274 |
+
confidence = result.conf.item()
|
| 275 |
+
xmin, ymin, xmax, ymax = map(int, result.xyxy[0])
|
| 276 |
+
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), (255, 0, 0), 2)
|
| 277 |
+
|
| 278 |
+
font_scale = 1.0
|
| 279 |
+
thickness = 2
|
| 280 |
+
text = f'{label} {confidence:.2f}'
|
| 281 |
+
(text_width, text_height), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)
|
| 282 |
+
cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED)
|
| 283 |
+
cv2.putText(image_with_boxes, text, (xmin, ymin - baseline), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
|
| 284 |
+
|
| 285 |
+
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")
|
| 286 |
+
|
| 287 |
+
raw_predictions_str = "\n".join(raw_predictions)
|
| 288 |
+
|
| 289 |
+
# Convert image_with_boxes to PIL image and add watermark
|
| 290 |
+
image_with_boxes_pil = Image.fromarray(image_with_boxes)
|
| 291 |
+
image_with_boxes_pil_with_watermark = add_watermark(image_with_boxes_pil)
|
| 292 |
+
|
| 293 |
+
return np.array(image_with_boxes_pil_with_watermark), raw_predictions_str
|
| 294 |
+
except Exception as e:
|
| 295 |
+
print("Error in object detection:", e)
|
| 296 |
+
return np.zeros_like(image), str(e)
|