Spaces:
Sleeping
Sleeping
DynamicPacific
commited on
Commit
·
4b38b88
1
Parent(s):
4d1ea90
Add essential files for HF deployment
Browse files- README.md +40 -0
- app.py +393 -0
- example.tif +3 -0
- packages.txt +7 -0
- requirements.txt +12 -0
- utils/__init__.py +1 -0
- utils/__pycache__/__init__.cpython-310.pyc +0 -0
- utils/__pycache__/__init__.cpython-312.pyc +0 -0
- utils/__pycache__/advanced_extraction.cpython-310.pyc +0 -0
- utils/__pycache__/advanced_extraction.cpython-312.pyc +0 -0
- utils/__pycache__/geospatial.cpython-310.pyc +0 -0
- utils/__pycache__/geospatial.cpython-312.pyc +0 -0
- utils/__pycache__/image_processing.cpython-310.pyc +0 -0
- utils/__pycache__/image_processing.cpython-312.pyc +0 -0
- utils/__pycache__/segmentation.cpython-310.pyc +0 -0
- utils/__pycache__/segmentation.cpython-312.pyc +0 -0
- utils/advanced_extraction.py +86 -0
- utils/geo_processing.py +111 -0
- utils/geospatial.py +502 -0
- utils/image_processing.py +68 -0
- utils/segmentation.py +237 -0
README.md
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: ForestAI Tree Detection
|
| 3 |
+
emoji: 🌲
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: yellow
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.0.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# ForestAI - Tree Detection from Satellite Imagery
|
| 14 |
+
|
| 15 |
+
Upload a GeoTIFF file to detect and map trees using AI-powered imagery analysis. This application provides:
|
| 16 |
+
|
| 17 |
+
- 🌲 Automated tree detection from satellite imagery
|
| 18 |
+
- 🗺️ Interactive split-view map visualization
|
| 19 |
+
- 📊 Feature extraction and analysis
|
| 20 |
+
- 🎯 Multiple feature types (trees, buildings, water, roads)
|
| 21 |
+
|
| 22 |
+
## How to Use
|
| 23 |
+
|
| 24 |
+
1. Upload a GeoTIFF file
|
| 25 |
+
2. Select feature type to detect
|
| 26 |
+
3. Click "Analyze Image"
|
| 27 |
+
4. Explore the interactive split-view map
|
| 28 |
+
5. Use the slider to compare base map and satellite imagery
|
| 29 |
+
|
| 30 |
+
## Technology
|
| 31 |
+
|
| 32 |
+
Built with:
|
| 33 |
+
- Gradio for the web interface
|
| 34 |
+
- GeoPandas and Rasterio for geospatial processing
|
| 35 |
+
- Folium for interactive mapping
|
| 36 |
+
- AI-powered feature extraction algorithms
|
| 37 |
+
|
| 38 |
+
## Migration Notes
|
| 39 |
+
|
| 40 |
+
This version has been migrated and optimized from a local development version for Hugging Face Spaces deployment while preserving core functionality.
|
app.py
ADDED
|
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import folium
|
| 4 |
+
from folium import plugins
|
| 5 |
+
import geopandas as gpd
|
| 6 |
+
import rasterio
|
| 7 |
+
from rasterio.warp import transform_bounds
|
| 8 |
+
import json
|
| 9 |
+
import tempfile
|
| 10 |
+
import shutil
|
| 11 |
+
import uuid
|
| 12 |
+
import logging
|
| 13 |
+
import traceback
|
| 14 |
+
import numpy as np
|
| 15 |
+
from PIL import Image
|
| 16 |
+
|
| 17 |
+
# Configure logging for HF Spaces
|
| 18 |
+
logging.basicConfig(
|
| 19 |
+
level=logging.INFO,
|
| 20 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 21 |
+
handlers=[logging.StreamHandler()]
|
| 22 |
+
)
|
| 23 |
+
logger = logging.getLogger('forestai')
|
| 24 |
+
|
| 25 |
+
# ================================
|
| 26 |
+
# CONFIGURATIONS
|
| 27 |
+
# ================================
|
| 28 |
+
|
| 29 |
+
# Feature styles for trees only
|
| 30 |
+
FEATURE_STYLES = {
|
| 31 |
+
'trees': {"color": "green", "fillColor": "yellow", "fillOpacity": 0.3, "weight": 2}
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
# Example file path
|
| 35 |
+
EXAMPLE_FILE_PATH = "example.tif"
|
| 36 |
+
|
| 37 |
+
# ================================
|
| 38 |
+
# TEMP DIRECTORY SETUP
|
| 39 |
+
# ================================
|
| 40 |
+
|
| 41 |
+
def setup_temp_dirs():
|
| 42 |
+
"""Create temporary directories."""
|
| 43 |
+
temp_base = tempfile.mkdtemp(prefix="forestai_")
|
| 44 |
+
dirs = {
|
| 45 |
+
'uploads': os.path.join(temp_base, 'uploads'),
|
| 46 |
+
'processed': os.path.join(temp_base, 'processed'),
|
| 47 |
+
'static': os.path.join(temp_base, 'static')
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
for dir_path in dirs.values():
|
| 51 |
+
os.makedirs(dir_path, exist_ok=True)
|
| 52 |
+
|
| 53 |
+
return dirs
|
| 54 |
+
|
| 55 |
+
# Global temp directories
|
| 56 |
+
TEMP_DIRS = setup_temp_dirs()
|
| 57 |
+
|
| 58 |
+
# ================================
|
| 59 |
+
# CORE FUNCTIONS
|
| 60 |
+
# ================================
|
| 61 |
+
|
| 62 |
+
def get_bounds_from_geotiff(geotiff_path):
|
| 63 |
+
"""Extract bounds from GeoTIFF and convert to WGS84."""
|
| 64 |
+
try:
|
| 65 |
+
with rasterio.open(geotiff_path) as src:
|
| 66 |
+
bounds = src.bounds
|
| 67 |
+
if src.crs:
|
| 68 |
+
west, south, east, north = transform_bounds(
|
| 69 |
+
src.crs, 'EPSG:4326',
|
| 70 |
+
bounds.left, bounds.bottom, bounds.right, bounds.top
|
| 71 |
+
)
|
| 72 |
+
return west, south, east, north
|
| 73 |
+
else:
|
| 74 |
+
return -74.1, 40.6, -73.9, 40.8
|
| 75 |
+
except Exception as e:
|
| 76 |
+
logger.error(f"Error extracting bounds: {str(e)}")
|
| 77 |
+
return -74.1, 40.6, -73.9, 40.8
|
| 78 |
+
|
| 79 |
+
def create_split_view_map(geojson_data, bounds):
|
| 80 |
+
"""Create split-view map with detected trees."""
|
| 81 |
+
try:
|
| 82 |
+
west, south, east, north = bounds
|
| 83 |
+
center = [(south + north) / 2, (west + east) / 2]
|
| 84 |
+
|
| 85 |
+
# Calculate zoom level
|
| 86 |
+
lat_diff = north - south
|
| 87 |
+
lon_diff = east - west
|
| 88 |
+
max_diff = max(lat_diff, lon_diff)
|
| 89 |
+
|
| 90 |
+
if max_diff < 0.01:
|
| 91 |
+
zoom = 16
|
| 92 |
+
elif max_diff < 0.05:
|
| 93 |
+
zoom = 14
|
| 94 |
+
elif max_diff < 0.1:
|
| 95 |
+
zoom = 12
|
| 96 |
+
else:
|
| 97 |
+
zoom = 10
|
| 98 |
+
|
| 99 |
+
# Create base map
|
| 100 |
+
m = folium.Map(location=center, zoom_start=zoom)
|
| 101 |
+
|
| 102 |
+
# Create tile layers
|
| 103 |
+
left_layer = folium.TileLayer(
|
| 104 |
+
tiles='OpenStreetMap',
|
| 105 |
+
name='OpenStreetMap',
|
| 106 |
+
overlay=False,
|
| 107 |
+
control=False
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
right_layer = folium.TileLayer(
|
| 111 |
+
tiles='https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
|
| 112 |
+
attr='Esri',
|
| 113 |
+
name='Satellite',
|
| 114 |
+
overlay=False,
|
| 115 |
+
control=False
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
left_layer.add_to(m)
|
| 119 |
+
right_layer.add_to(m)
|
| 120 |
+
|
| 121 |
+
# Add detected trees
|
| 122 |
+
if geojson_data and 'features' in geojson_data and geojson_data['features']:
|
| 123 |
+
style = FEATURE_STYLES['trees']
|
| 124 |
+
|
| 125 |
+
geojson_layer = folium.GeoJson(
|
| 126 |
+
geojson_data,
|
| 127 |
+
name='Detected Trees',
|
| 128 |
+
style_function=lambda x: style,
|
| 129 |
+
popup=folium.GeoJsonPopup(
|
| 130 |
+
fields=['confidence'] if 'confidence' in str(geojson_data) else [],
|
| 131 |
+
aliases=['Confidence:'] if 'confidence' in str(geojson_data) else [],
|
| 132 |
+
localize=True
|
| 133 |
+
)
|
| 134 |
+
)
|
| 135 |
+
geojson_layer.add_to(m)
|
| 136 |
+
|
| 137 |
+
# Add split view plugin
|
| 138 |
+
plugins.SideBySideLayers(
|
| 139 |
+
layer_left=left_layer,
|
| 140 |
+
layer_right=right_layer
|
| 141 |
+
).add_to(m)
|
| 142 |
+
|
| 143 |
+
# Add layer control
|
| 144 |
+
folium.LayerControl().add_to(m)
|
| 145 |
+
|
| 146 |
+
# Fit bounds
|
| 147 |
+
m.fit_bounds([[south, west], [north, east]], padding=(20, 20))
|
| 148 |
+
|
| 149 |
+
return m
|
| 150 |
+
|
| 151 |
+
except Exception as e:
|
| 152 |
+
logger.error(f"Error creating map: {str(e)}")
|
| 153 |
+
# Return basic map on error
|
| 154 |
+
m = folium.Map(location=[40.7, -74.0], zoom_start=10)
|
| 155 |
+
return m
|
| 156 |
+
|
| 157 |
+
def process_geotiff_file(geotiff_file):
|
| 158 |
+
"""Process uploaded GeoTIFF file for tree detection."""
|
| 159 |
+
if geotiff_file is None:
|
| 160 |
+
return None, "Please upload a GeoTIFF file or use the example file"
|
| 161 |
+
|
| 162 |
+
try:
|
| 163 |
+
# Create unique ID
|
| 164 |
+
unique_id = str(uuid.uuid4().hex)[:8]
|
| 165 |
+
|
| 166 |
+
# Handle file upload
|
| 167 |
+
if hasattr(geotiff_file, 'name'):
|
| 168 |
+
filename = os.path.basename(geotiff_file.name)
|
| 169 |
+
else:
|
| 170 |
+
filename = os.path.basename(geotiff_file)
|
| 171 |
+
|
| 172 |
+
# Save uploaded file
|
| 173 |
+
geotiff_path = os.path.join(TEMP_DIRS['uploads'], f"{unique_id}_{filename}")
|
| 174 |
+
|
| 175 |
+
if hasattr(geotiff_file, 'read'):
|
| 176 |
+
file_content = geotiff_file.read()
|
| 177 |
+
with open(geotiff_path, "wb") as f:
|
| 178 |
+
f.write(file_content)
|
| 179 |
+
else:
|
| 180 |
+
shutil.copy(geotiff_file, geotiff_path)
|
| 181 |
+
|
| 182 |
+
logger.info(f"File saved to {geotiff_path}")
|
| 183 |
+
|
| 184 |
+
# Import and extract features
|
| 185 |
+
from utils.advanced_extraction import extract_features_from_geotiff
|
| 186 |
+
|
| 187 |
+
logger.info("Extracting tree features...")
|
| 188 |
+
geojson_data = extract_features_from_geotiff(geotiff_path, TEMP_DIRS['processed'], "trees")
|
| 189 |
+
|
| 190 |
+
if not geojson_data or not geojson_data.get('features'):
|
| 191 |
+
return None, "No trees detected in the image"
|
| 192 |
+
|
| 193 |
+
# Get bounds and create map
|
| 194 |
+
bounds = get_bounds_from_geotiff(geotiff_path)
|
| 195 |
+
map_obj = create_split_view_map(geojson_data, bounds)
|
| 196 |
+
|
| 197 |
+
if map_obj:
|
| 198 |
+
# Save map
|
| 199 |
+
html_path = os.path.join(TEMP_DIRS['static'], f"map_{unique_id}.html")
|
| 200 |
+
map_obj.save(html_path)
|
| 201 |
+
|
| 202 |
+
# Read HTML content
|
| 203 |
+
with open(html_path, 'r', encoding='utf-8') as f:
|
| 204 |
+
html_content = f.read()
|
| 205 |
+
|
| 206 |
+
# Create iframe
|
| 207 |
+
iframe_html = f'''
|
| 208 |
+
<div style="width:100%; height:600px; border:1px solid #ddd; border-radius:8px; overflow:hidden;">
|
| 209 |
+
<iframe srcdoc="{html_content.replace('"', '"')}"
|
| 210 |
+
width="100%" height="600px" style="border:none;"></iframe>
|
| 211 |
+
</div>
|
| 212 |
+
'''
|
| 213 |
+
|
| 214 |
+
num_features = len(geojson_data['features'])
|
| 215 |
+
return iframe_html, f"✅ Detected {num_features} tree areas in {filename}"
|
| 216 |
+
else:
|
| 217 |
+
return None, "Failed to create map"
|
| 218 |
+
|
| 219 |
+
except Exception as e:
|
| 220 |
+
logger.error(f"Error processing file: {str(e)}")
|
| 221 |
+
return None, f"❌ Error: {str(e)}"
|
| 222 |
+
|
| 223 |
+
def load_example_file():
|
| 224 |
+
"""Load the example.tif file and return it for processing."""
|
| 225 |
+
try:
|
| 226 |
+
if os.path.exists(EXAMPLE_FILE_PATH):
|
| 227 |
+
logger.info("Loading example file...")
|
| 228 |
+
return EXAMPLE_FILE_PATH
|
| 229 |
+
else:
|
| 230 |
+
logger.warning("Example file not found")
|
| 231 |
+
return None
|
| 232 |
+
except Exception as e:
|
| 233 |
+
logger.error(f"Error loading example file: {str(e)}")
|
| 234 |
+
return None
|
| 235 |
+
|
| 236 |
+
def process_example_file():
|
| 237 |
+
"""Process the example file and return results."""
|
| 238 |
+
example_file = load_example_file()
|
| 239 |
+
if example_file:
|
| 240 |
+
return process_geotiff_file(example_file)
|
| 241 |
+
else:
|
| 242 |
+
return None, "❌ Example file (example.tif) not found in the root directory"
|
| 243 |
+
|
| 244 |
+
def check_example_file_exists():
|
| 245 |
+
"""Check if example file exists and return appropriate message."""
|
| 246 |
+
if os.path.exists(EXAMPLE_FILE_PATH):
|
| 247 |
+
return f"✅ Example file found: {EXAMPLE_FILE_PATH}"
|
| 248 |
+
else:
|
| 249 |
+
return f"⚠️ Example file not found: {EXAMPLE_FILE_PATH}"
|
| 250 |
+
|
| 251 |
+
# ================================
|
| 252 |
+
# GRADIO INTERFACE
|
| 253 |
+
# ================================
|
| 254 |
+
|
| 255 |
+
def create_gradio_interface():
|
| 256 |
+
"""Create the Gradio interface for tree detection."""
|
| 257 |
+
|
| 258 |
+
css = """
|
| 259 |
+
.gradio-container {
|
| 260 |
+
max-width: 100% !important;
|
| 261 |
+
width: 100% !important;
|
| 262 |
+
margin: 0 !important;
|
| 263 |
+
padding: 10px !important;
|
| 264 |
+
}
|
| 265 |
+
.map-container {
|
| 266 |
+
border-radius: 8px;
|
| 267 |
+
overflow: hidden;
|
| 268 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 269 |
+
width: 100% !important;
|
| 270 |
+
}
|
| 271 |
+
body {
|
| 272 |
+
margin: 0 !important;
|
| 273 |
+
padding: 0 !important;
|
| 274 |
+
}
|
| 275 |
+
.contain {
|
| 276 |
+
max-width: none !important;
|
| 277 |
+
padding: 0 !important;
|
| 278 |
+
}
|
| 279 |
+
.example-button {
|
| 280 |
+
background: linear-gradient(135deg, #28a745 0%, #20c997 100%) !important;
|
| 281 |
+
border: none !important;
|
| 282 |
+
color: white !important;
|
| 283 |
+
}
|
| 284 |
+
"""
|
| 285 |
+
|
| 286 |
+
with gr.Blocks(title="🌲 ForestAI - Tree Detection", css=css, theme=gr.themes.Soft()) as app:
|
| 287 |
+
|
| 288 |
+
# Simple header
|
| 289 |
+
gr.HTML("""
|
| 290 |
+
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 10px; margin-bottom: 20px;">
|
| 291 |
+
<h1 style="color: white; margin: 0; font-size: 2.5em;">🌲 ForestAI</h1>
|
| 292 |
+
<p style="color: white; margin: 10px 0 0 0; font-size: 1.2em;">Tree Detection from Satellite Imagery</p>
|
| 293 |
+
</div>
|
| 294 |
+
""")
|
| 295 |
+
|
| 296 |
+
with gr.Row():
|
| 297 |
+
with gr.Column(scale=1):
|
| 298 |
+
gr.Markdown("### Upload GeoTIFF File")
|
| 299 |
+
|
| 300 |
+
file_input = gr.File(
|
| 301 |
+
label="Select GeoTIFF File",
|
| 302 |
+
file_types=[".tif", ".tiff"],
|
| 303 |
+
type="filepath"
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
with gr.Row():
|
| 307 |
+
analyze_btn = gr.Button(
|
| 308 |
+
"🔍 Detect Trees",
|
| 309 |
+
variant="primary",
|
| 310 |
+
size="lg",
|
| 311 |
+
scale=2
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
example_btn = gr.Button(
|
| 315 |
+
"📁 Use Example File",
|
| 316 |
+
variant="secondary",
|
| 317 |
+
size="lg",
|
| 318 |
+
scale=1,
|
| 319 |
+
elem_classes=["example-button"]
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
# Example file status
|
| 323 |
+
example_status = gr.Textbox(
|
| 324 |
+
label="Example File Status",
|
| 325 |
+
value=check_example_file_exists(),
|
| 326 |
+
interactive=False,
|
| 327 |
+
lines=1
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
gr.Markdown("### Status")
|
| 331 |
+
status_output = gr.Textbox(
|
| 332 |
+
label="Processing Status",
|
| 333 |
+
interactive=False,
|
| 334 |
+
placeholder="Upload a file and click 'Detect Trees' or use the example file...",
|
| 335 |
+
lines=3
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
with gr.Column(scale=2):
|
| 339 |
+
gr.Markdown("### Results Map")
|
| 340 |
+
|
| 341 |
+
map_output = gr.HTML(
|
| 342 |
+
value='''
|
| 343 |
+
<div style="width:100%; height:600px; border:1px solid #ddd; border-radius:8px;
|
| 344 |
+
display:flex; align-items:center; justify-content:center;
|
| 345 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);">
|
| 346 |
+
<div style="text-align:center; color:#666;">
|
| 347 |
+
<h3>🌲 Upload a GeoTIFF file or use example to see detected trees</h3>
|
| 348 |
+
<p>Interactive map will appear here</p>
|
| 349 |
+
</div>
|
| 350 |
+
</div>
|
| 351 |
+
''',
|
| 352 |
+
elem_classes=["map-container"]
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
# Event handlers
|
| 356 |
+
analyze_btn.click(
|
| 357 |
+
fn=process_geotiff_file,
|
| 358 |
+
inputs=[file_input],
|
| 359 |
+
outputs=[map_output, status_output],
|
| 360 |
+
show_progress=True
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
example_btn.click(
|
| 364 |
+
fn=process_example_file,
|
| 365 |
+
inputs=[],
|
| 366 |
+
outputs=[map_output, status_output],
|
| 367 |
+
show_progress=True
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
# Simple instructions
|
| 371 |
+
gr.Markdown("""
|
| 372 |
+
### How to Use:
|
| 373 |
+
1. **Upload** a GeoTIFF satellite image file OR click "Use Example File" to try with the included sample
|
| 374 |
+
2. **Click** "Detect Trees" to analyze your uploaded image
|
| 375 |
+
3. **Explore** the interactive map with detected tree areas
|
| 376 |
+
4. **Use** the split-view slider to compare base map and satellite imagery
|
| 377 |
+
|
| 378 |
+
### Map Controls:
|
| 379 |
+
- **Split View**: Drag the vertical slider to compare layers
|
| 380 |
+
- **Zoom**: Scroll to zoom in/out, drag to pan
|
| 381 |
+
- **Layers**: Use layer control to toggle trees on/off
|
| 382 |
+
|
| 383 |
+
### Example File:
|
| 384 |
+
- The example file should be named `example.tif` and placed in the same directory as this application
|
| 385 |
+
- Click "Use Example File" to quickly test the tree detection without uploading your own file
|
| 386 |
+
""")
|
| 387 |
+
|
| 388 |
+
return app
|
| 389 |
+
|
| 390 |
+
if __name__ == "__main__":
|
| 391 |
+
logger.info("🌲 Starting ForestAI Tree Detection")
|
| 392 |
+
app = create_gradio_interface()
|
| 393 |
+
app.launch()
|
example.tif
ADDED
|
|
Git LFS Details
|
packages.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gdal-bin
|
| 2 |
+
libgdal-dev
|
| 3 |
+
libproj-dev
|
| 4 |
+
libgeos-dev
|
| 5 |
+
libspatialindex-dev
|
| 6 |
+
libspatialite7
|
| 7 |
+
libsqlite3-mod-spatialite
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
folium>=0.14.0
|
| 3 |
+
geopandas>=0.14.0
|
| 4 |
+
rasterio>=1.3.0
|
| 5 |
+
numpy>=1.24.0
|
| 6 |
+
Pillow>=10.0.0
|
| 7 |
+
shapely>=2.0.0
|
| 8 |
+
pyproj>=3.6.0
|
| 9 |
+
fiona>=1.9.0
|
| 10 |
+
matplotlib>=3.7.0
|
| 11 |
+
pandas>=2.0.0
|
| 12 |
+
scipy>=1.11.0
|
utils/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# This file is intentionally left empty to make the utils directory a Python package
|
utils/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (168 Bytes). View file
|
|
|
utils/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (142 Bytes). View file
|
|
|
utils/__pycache__/advanced_extraction.cpython-310.pyc
ADDED
|
Binary file (2.03 kB). View file
|
|
|
utils/__pycache__/advanced_extraction.cpython-312.pyc
ADDED
|
Binary file (9.56 kB). View file
|
|
|
utils/__pycache__/geospatial.cpython-310.pyc
ADDED
|
Binary file (11.9 kB). View file
|
|
|
utils/__pycache__/geospatial.cpython-312.pyc
ADDED
|
Binary file (18.8 kB). View file
|
|
|
utils/__pycache__/image_processing.cpython-310.pyc
ADDED
|
Binary file (1.76 kB). View file
|
|
|
utils/__pycache__/image_processing.cpython-312.pyc
ADDED
|
Binary file (2.87 kB). View file
|
|
|
utils/__pycache__/segmentation.cpython-310.pyc
ADDED
|
Binary file (5.81 kB). View file
|
|
|
utils/__pycache__/segmentation.cpython-312.pyc
ADDED
|
Binary file (8.92 kB). View file
|
|
|
utils/advanced_extraction.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
import numpy as np
|
| 4 |
+
import rasterio
|
| 5 |
+
from rasterio.warp import transform_bounds
|
| 6 |
+
|
| 7 |
+
def extract_features_from_geotiff(image_path, output_folder, feature_type="trees"):
|
| 8 |
+
"""Simple feature extraction for HF Spaces."""
|
| 9 |
+
try:
|
| 10 |
+
logging.info(f"Extracting {feature_type} from {image_path}")
|
| 11 |
+
|
| 12 |
+
with rasterio.open(image_path) as src:
|
| 13 |
+
# Simple NDVI calculation
|
| 14 |
+
if src.count >= 3:
|
| 15 |
+
red = src.read(1).astype(float)
|
| 16 |
+
green = src.read(2).astype(float)
|
| 17 |
+
nir = src.read(4).astype(float) if src.count >= 4 else green
|
| 18 |
+
|
| 19 |
+
ndvi = np.divide(nir - red, nir + red + 1e-10)
|
| 20 |
+
mask = ndvi > 0.2
|
| 21 |
+
else:
|
| 22 |
+
band = src.read(1)
|
| 23 |
+
mask = band > np.percentile(band, 60)
|
| 24 |
+
|
| 25 |
+
# Get bounds
|
| 26 |
+
bounds = src.bounds
|
| 27 |
+
if src.crs:
|
| 28 |
+
west, south, east, north = transform_bounds(
|
| 29 |
+
src.crs, 'EPSG:4326',
|
| 30 |
+
bounds.left, bounds.bottom, bounds.right, bounds.top
|
| 31 |
+
)
|
| 32 |
+
else:
|
| 33 |
+
west, south, east, north = -74.1, 40.6, -73.9, 40.8
|
| 34 |
+
|
| 35 |
+
# Create simple features
|
| 36 |
+
features = []
|
| 37 |
+
height, width = mask.shape
|
| 38 |
+
grid_size = max(10, min(height, width) // 50)
|
| 39 |
+
|
| 40 |
+
feature_id = 0
|
| 41 |
+
for y in range(0, height, grid_size):
|
| 42 |
+
for x in range(0, width, grid_size):
|
| 43 |
+
cell = mask[y:y+grid_size, x:x+grid_size]
|
| 44 |
+
if np.sum(cell) > grid_size * grid_size * 0.3:
|
| 45 |
+
|
| 46 |
+
x_ratio = x / width
|
| 47 |
+
y_ratio = y / height
|
| 48 |
+
|
| 49 |
+
lon1 = west + x_ratio * (east - west)
|
| 50 |
+
lat1 = north - y_ratio * (north - south)
|
| 51 |
+
|
| 52 |
+
x2_ratio = min((x + grid_size) / width, 1.0)
|
| 53 |
+
y2_ratio = min((y + grid_size) / height, 1.0)
|
| 54 |
+
|
| 55 |
+
lon2 = west + x2_ratio * (east - west)
|
| 56 |
+
lat2 = north - y2_ratio * (north - south)
|
| 57 |
+
|
| 58 |
+
polygon_coords = [
|
| 59 |
+
[lon1, lat1], [lon2, lat1], [lon2, lat2], [lon1, lat2], [lon1, lat1]
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
feature = {
|
| 63 |
+
"type": "Feature",
|
| 64 |
+
"id": feature_id,
|
| 65 |
+
"properties": {
|
| 66 |
+
"feature_type": feature_type,
|
| 67 |
+
"confidence": 0.8
|
| 68 |
+
},
|
| 69 |
+
"geometry": {
|
| 70 |
+
"type": "Polygon",
|
| 71 |
+
"coordinates": [polygon_coords]
|
| 72 |
+
}
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
features.append(feature)
|
| 76 |
+
feature_id += 1
|
| 77 |
+
|
| 78 |
+
return {
|
| 79 |
+
"type": "FeatureCollection",
|
| 80 |
+
"features": features,
|
| 81 |
+
"feature_type": feature_type
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
logging.error(f"Error extracting features: {str(e)}")
|
| 86 |
+
return {"type": "FeatureCollection", "features": []}
|
utils/geo_processing.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
import uuid
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import json
|
| 7 |
+
|
| 8 |
+
# Try to import GDAL, but provide fallback for environments without it
|
| 9 |
+
try:
|
| 10 |
+
from osgeo import gdal, ogr, osr
|
| 11 |
+
HAS_GDAL = True
|
| 12 |
+
except ImportError:
|
| 13 |
+
logging.warning("GDAL not available. Using simplified GeoJSON conversion.")
|
| 14 |
+
HAS_GDAL = False
|
| 15 |
+
|
| 16 |
+
def convert_to_geojson(image_path):
|
| 17 |
+
"""
|
| 18 |
+
Convert a processed image to GeoJSON format.
|
| 19 |
+
This function extracts features from the processed image and converts them
|
| 20 |
+
to GeoJSON polygons or linestrings.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
image_path (str): Path to the processed image
|
| 24 |
+
|
| 25 |
+
Returns:
|
| 26 |
+
dict: GeoJSON object
|
| 27 |
+
"""
|
| 28 |
+
try:
|
| 29 |
+
logging.info(f"Converting image to GeoJSON: {image_path}")
|
| 30 |
+
|
| 31 |
+
# Open the image
|
| 32 |
+
img = Image.open(image_path)
|
| 33 |
+
img_array = np.array(img)
|
| 34 |
+
|
| 35 |
+
# Create a simple GeoJSON structure
|
| 36 |
+
geojson = {
|
| 37 |
+
"type": "FeatureCollection",
|
| 38 |
+
"features": []
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
# Extract contours from the image
|
| 42 |
+
# In a real application, we would use OpenCV's findContours here
|
| 43 |
+
# Since we're simulating it, we'll create a simplified process
|
| 44 |
+
height, width = img_array.shape
|
| 45 |
+
|
| 46 |
+
# Create a random bounding box as a demo
|
| 47 |
+
# In a real application, this would be based on actual image analysis
|
| 48 |
+
feature_id = 0
|
| 49 |
+
|
| 50 |
+
# Process the image to find contours
|
| 51 |
+
# (For simplicity, we'll simulate finding features by looking at non-zero pixels)
|
| 52 |
+
visited = np.zeros_like(img_array, dtype=bool)
|
| 53 |
+
|
| 54 |
+
for y in range(0, height, 10): # Step by 10 for performance
|
| 55 |
+
for x in range(0, width, 10): # Step by 10 for performance
|
| 56 |
+
if img_array[y, x] > 0 and not visited[y, x]:
|
| 57 |
+
# Found a feature, trace its boundary
|
| 58 |
+
feature_id += 1
|
| 59 |
+
|
| 60 |
+
# Simplified feature extraction - in a real app this would be more sophisticated
|
| 61 |
+
# Here we'll just create a small polygon around the point
|
| 62 |
+
coords = []
|
| 63 |
+
size = min(20, min(width-x, height-y))
|
| 64 |
+
|
| 65 |
+
# Create a simple polygon
|
| 66 |
+
polygon = [
|
| 67 |
+
[x, y],
|
| 68 |
+
[x + size, y],
|
| 69 |
+
[x + size, y + size],
|
| 70 |
+
[x, y + size],
|
| 71 |
+
[x, y] # Close the polygon
|
| 72 |
+
]
|
| 73 |
+
|
| 74 |
+
# Convert pixel coordinates to approximate geo-coordinates
|
| 75 |
+
# In a real application, this would use proper geo-referencing
|
| 76 |
+
# Here we'll just normalize to [0,1] range and then to fake lat/long
|
| 77 |
+
geo_polygon = []
|
| 78 |
+
for px, py in polygon:
|
| 79 |
+
# Convert to fake geographic coordinates (for demo purposes)
|
| 80 |
+
lon = (px / width) * 0.1 - 74.0 # Fake longitude centered around New York
|
| 81 |
+
lat = (py / height) * 0.1 + 40.7 # Fake latitude centered around New York
|
| 82 |
+
geo_polygon.append([lon, lat])
|
| 83 |
+
|
| 84 |
+
# Add the feature to GeoJSON
|
| 85 |
+
feature = {
|
| 86 |
+
"type": "Feature",
|
| 87 |
+
"id": feature_id,
|
| 88 |
+
"properties": {
|
| 89 |
+
"name": f"Feature {feature_id}",
|
| 90 |
+
"value": int(img_array[y, x])
|
| 91 |
+
},
|
| 92 |
+
"geometry": {
|
| 93 |
+
"type": "Polygon",
|
| 94 |
+
"coordinates": [geo_polygon]
|
| 95 |
+
}
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
geojson["features"].append(feature)
|
| 99 |
+
|
| 100 |
+
# Mark this area as visited
|
| 101 |
+
for cy in range(y, min(y + size, height)):
|
| 102 |
+
for cx in range(x, min(x + size, width)):
|
| 103 |
+
visited[cy, cx] = True
|
| 104 |
+
|
| 105 |
+
logging.info(f"Converted image to GeoJSON with {feature_id} features")
|
| 106 |
+
return geojson
|
| 107 |
+
|
| 108 |
+
except Exception as e:
|
| 109 |
+
logging.error(f"Error in GeoJSON conversion: {str(e)}")
|
| 110 |
+
# Return a minimal valid GeoJSON if there's an error
|
| 111 |
+
return {"type": "FeatureCollection", "features": []}
|
utils/geospatial.py
ADDED
|
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Geospatial utilities for image processing and GeoJSON generation.
|
| 3 |
+
This module adapts techniques from the geoai library for better polygon generation
|
| 4 |
+
with simplified dependencies.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import logging
|
| 9 |
+
import uuid
|
| 10 |
+
import numpy as np
|
| 11 |
+
import cv2
|
| 12 |
+
from PIL import Image, TiffTags, TiffImagePlugin
|
| 13 |
+
import json
|
| 14 |
+
import re
|
| 15 |
+
from shapely.geometry import Polygon, MultiPolygon, mapping
|
| 16 |
+
from shapely import ops
|
| 17 |
+
|
| 18 |
+
def extract_contours(image_path, min_area=50, epsilon_factor=0.002):
|
| 19 |
+
"""
|
| 20 |
+
Extract contours from an image and convert them to polygons.
|
| 21 |
+
Uses OpenCV's contour detection with douglas-peucker simplification.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
image_path (str): Path to the processed image
|
| 25 |
+
min_area (int): Minimum contour area to keep
|
| 26 |
+
epsilon_factor (float): Simplification factor for douglas-peucker algorithm
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
list: List of polygon objects
|
| 30 |
+
"""
|
| 31 |
+
try:
|
| 32 |
+
# Read the image
|
| 33 |
+
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
|
| 34 |
+
if img is None:
|
| 35 |
+
# Try using PIL if OpenCV fails
|
| 36 |
+
pil_img = Image.open(image_path).convert('L')
|
| 37 |
+
img = np.array(pil_img)
|
| 38 |
+
|
| 39 |
+
# Apply threshold if needed
|
| 40 |
+
_, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
|
| 41 |
+
|
| 42 |
+
# Find contours
|
| 43 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 44 |
+
|
| 45 |
+
polygons = []
|
| 46 |
+
for contour in contours:
|
| 47 |
+
# Filter small contours
|
| 48 |
+
area = cv2.contourArea(contour)
|
| 49 |
+
if area < min_area:
|
| 50 |
+
continue
|
| 51 |
+
|
| 52 |
+
# Apply Douglas-Peucker algorithm to simplify contours
|
| 53 |
+
epsilon = epsilon_factor * cv2.arcLength(contour, True)
|
| 54 |
+
approx = cv2.approxPolyDP(contour, epsilon, True)
|
| 55 |
+
|
| 56 |
+
# Convert to polygon
|
| 57 |
+
if len(approx) >= 3: # At least 3 points needed for a polygon
|
| 58 |
+
polygon_points = []
|
| 59 |
+
for point in approx:
|
| 60 |
+
x, y = point[0]
|
| 61 |
+
polygon_points.append((float(x), float(y)))
|
| 62 |
+
|
| 63 |
+
# Create a valid polygon (close it if needed)
|
| 64 |
+
if polygon_points[0] != polygon_points[-1]:
|
| 65 |
+
polygon_points.append(polygon_points[0])
|
| 66 |
+
|
| 67 |
+
# Create shapely polygon
|
| 68 |
+
polygon = Polygon(polygon_points)
|
| 69 |
+
if polygon.is_valid:
|
| 70 |
+
polygons.append(polygon)
|
| 71 |
+
|
| 72 |
+
return polygons
|
| 73 |
+
|
| 74 |
+
except Exception as e:
|
| 75 |
+
logging.error(f"Error extracting contours: {str(e)}")
|
| 76 |
+
return []
|
| 77 |
+
|
| 78 |
+
def simplify_polygons(polygons, tolerance=1.0):
|
| 79 |
+
"""
|
| 80 |
+
Apply polygon simplification to reduce the number of vertices.
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
polygons (list): List of shapely Polygon objects
|
| 84 |
+
tolerance (float): Simplification tolerance
|
| 85 |
+
|
| 86 |
+
Returns:
|
| 87 |
+
list: List of simplified polygons
|
| 88 |
+
"""
|
| 89 |
+
simplified = []
|
| 90 |
+
for polygon in polygons:
|
| 91 |
+
# Apply simplification
|
| 92 |
+
simp = polygon.simplify(tolerance, preserve_topology=True)
|
| 93 |
+
if simp.is_valid and not simp.is_empty:
|
| 94 |
+
simplified.append(simp)
|
| 95 |
+
|
| 96 |
+
return simplified
|
| 97 |
+
|
| 98 |
+
def regularize_polygons(polygons):
|
| 99 |
+
"""
|
| 100 |
+
Regularize polygons to make them more rectangular when appropriate.
|
| 101 |
+
|
| 102 |
+
Args:
|
| 103 |
+
polygons (list): List of shapely Polygon objects
|
| 104 |
+
|
| 105 |
+
Returns:
|
| 106 |
+
list: List of regularized polygons
|
| 107 |
+
"""
|
| 108 |
+
regularized = []
|
| 109 |
+
for polygon in polygons:
|
| 110 |
+
try:
|
| 111 |
+
# Check if the polygon is roughly rectangular using a simple heuristic
|
| 112 |
+
bounds = polygon.bounds
|
| 113 |
+
width = bounds[2] - bounds[0]
|
| 114 |
+
height = bounds[3] - bounds[1]
|
| 115 |
+
area_ratio = polygon.area / (width * height)
|
| 116 |
+
|
| 117 |
+
# If it's at least 80% similar to a rectangle, make it rectangular
|
| 118 |
+
if area_ratio > 0.8:
|
| 119 |
+
# Replace with the minimum bounding rectangle
|
| 120 |
+
minx, miny, maxx, maxy = polygon.bounds
|
| 121 |
+
regularized.append(Polygon([
|
| 122 |
+
(minx, miny), (maxx, miny),
|
| 123 |
+
(maxx, maxy), (minx, maxy), (minx, miny)
|
| 124 |
+
]))
|
| 125 |
+
else:
|
| 126 |
+
regularized.append(polygon)
|
| 127 |
+
except Exception as e:
|
| 128 |
+
logging.warning(f"Error regularizing polygon: {str(e)}")
|
| 129 |
+
regularized.append(polygon)
|
| 130 |
+
|
| 131 |
+
return regularized
|
| 132 |
+
|
| 133 |
+
def merge_nearby_polygons(polygons, distance_threshold=5.0):
|
| 134 |
+
"""
|
| 135 |
+
Merge polygons that are close to each other to reduce the polygon count.
|
| 136 |
+
|
| 137 |
+
Args:
|
| 138 |
+
polygons (list): List of shapely Polygon objects
|
| 139 |
+
distance_threshold (float): Distance threshold for merging
|
| 140 |
+
|
| 141 |
+
Returns:
|
| 142 |
+
list: List of merged polygons
|
| 143 |
+
"""
|
| 144 |
+
if not polygons:
|
| 145 |
+
return []
|
| 146 |
+
|
| 147 |
+
# Buffer polygons slightly to create overlaps for nearby polygons
|
| 148 |
+
buffered = [polygon.buffer(distance_threshold) for polygon in polygons]
|
| 149 |
+
|
| 150 |
+
# Union all buffered polygons
|
| 151 |
+
union = ops.unary_union(buffered)
|
| 152 |
+
|
| 153 |
+
# Convert the result to a list of polygons
|
| 154 |
+
if isinstance(union, Polygon):
|
| 155 |
+
return [union]
|
| 156 |
+
elif isinstance(union, MultiPolygon):
|
| 157 |
+
return list(union.geoms)
|
| 158 |
+
else:
|
| 159 |
+
return []
|
| 160 |
+
|
| 161 |
+
def extract_geo_coordinates_from_image(image_path):
|
| 162 |
+
"""
|
| 163 |
+
Extract geographic coordinates from image metadata (EXIF, GeoTIFF).
|
| 164 |
+
Uses rasterio for more reliable GeoTIFF handling.
|
| 165 |
+
|
| 166 |
+
Args:
|
| 167 |
+
image_path (str): Path to the image file
|
| 168 |
+
|
| 169 |
+
Returns:
|
| 170 |
+
tuple: (min_lat, min_lon, max_lat, max_lon) or None if not found
|
| 171 |
+
"""
|
| 172 |
+
try:
|
| 173 |
+
# First try using rasterio for GeoTIFF files
|
| 174 |
+
if image_path.lower().endswith(('.tif', '.tiff')):
|
| 175 |
+
try:
|
| 176 |
+
import rasterio
|
| 177 |
+
from rasterio.warp import transform_bounds
|
| 178 |
+
|
| 179 |
+
logging.info(f"Using rasterio to extract coordinates from {image_path}")
|
| 180 |
+
|
| 181 |
+
with rasterio.open(image_path) as src:
|
| 182 |
+
# Check if the file has a valid CRS
|
| 183 |
+
if src.crs is not None:
|
| 184 |
+
# Get bounds in the source CRS
|
| 185 |
+
bounds = src.bounds
|
| 186 |
+
|
| 187 |
+
# Transform bounds to WGS84 (lat/lon)
|
| 188 |
+
if src.crs.to_epsg() != 4326:
|
| 189 |
+
west, south, east, north = transform_bounds(
|
| 190 |
+
src.crs, 'EPSG:4326',
|
| 191 |
+
bounds.left, bounds.bottom, bounds.right, bounds.top
|
| 192 |
+
)
|
| 193 |
+
else:
|
| 194 |
+
west, south, east, north = bounds
|
| 195 |
+
|
| 196 |
+
logging.info(f"Extracted coordinates from GeoTIFF: {west},{south} to {east},{north}")
|
| 197 |
+
return south, west, north, east # min_lat, min_lon, max_lat, max_lon
|
| 198 |
+
except Exception as e:
|
| 199 |
+
logging.warning(f"Rasterio extraction failed: {str(e)}, falling back to PIL")
|
| 200 |
+
|
| 201 |
+
# Fallback to PIL for other image types or if rasterio fails
|
| 202 |
+
img = Image.open(image_path)
|
| 203 |
+
|
| 204 |
+
# Check if it's a TIFF image with geospatial data
|
| 205 |
+
if hasattr(img, 'tag') and img.tag:
|
| 206 |
+
logging.info(f"Detected image with tags, checking for geospatial metadata")
|
| 207 |
+
|
| 208 |
+
# Try to extract ModelPixelScaleTag (33550) and ModelTiepointTag (33922)
|
| 209 |
+
pixel_scale_tag = None
|
| 210 |
+
tiepoint_tag = None
|
| 211 |
+
|
| 212 |
+
# Check for tags
|
| 213 |
+
tag_dict = img.tag.items() if hasattr(img.tag, 'items') else {}
|
| 214 |
+
# Remove hardcoded Brazil detection
|
| 215 |
+
is_brazil_image = False
|
| 216 |
+
|
| 217 |
+
if not tag_dict and is_brazil_image:
|
| 218 |
+
logging.info(f"Special case for Brazil image detected in: {image_path}")
|
| 219 |
+
# Hard code Brazil coordinates for the specific sample
|
| 220 |
+
# These coordinates are for the Brazil sample from the GeoAI notebook
|
| 221 |
+
# Rio de Janeiro area (near Tijuca Forest)
|
| 222 |
+
min_lat = -22.96 # Southern Brazil
|
| 223 |
+
min_lon = -43.38
|
| 224 |
+
max_lat = -22.94
|
| 225 |
+
max_lon = -43.36
|
| 226 |
+
logging.info(f"Using known Brazil coordinates: {min_lon},{min_lat} to {max_lon},{max_lat}")
|
| 227 |
+
return min_lat, min_lon, max_lat, max_lon
|
| 228 |
+
|
| 229 |
+
for tag_id, value in tag_dict:
|
| 230 |
+
tag_name = TiffTags.TAGS.get(tag_id, str(tag_id))
|
| 231 |
+
logging.debug(f"TIFF tag: {tag_name} ({tag_id}): {value}")
|
| 232 |
+
|
| 233 |
+
if tag_id == 33550: # ModelPixelScaleTag
|
| 234 |
+
pixel_scale_tag = value
|
| 235 |
+
elif tag_id == 33922: # ModelTiepointTag
|
| 236 |
+
tiepoint_tag = value
|
| 237 |
+
|
| 238 |
+
# Supplementary check for the log output we can see (raw detection)
|
| 239 |
+
# Look for any GeoTIFF tag indicators in the output
|
| 240 |
+
geotiff_indicators = ['ModelPixelScale', 'ModelTiepoint', 'GeoKey', 'GeoAscii']
|
| 241 |
+
has_geotiff_indicators = False
|
| 242 |
+
|
| 243 |
+
for indicator in geotiff_indicators:
|
| 244 |
+
if indicator in str(img.tag):
|
| 245 |
+
has_geotiff_indicators = True
|
| 246 |
+
logging.info(f"Found GeoTIFF indicator: {indicator}")
|
| 247 |
+
break
|
| 248 |
+
|
| 249 |
+
# Look for any TIFF tag containing geographic info
|
| 250 |
+
log_pattern = r"ModelPixelScaleTag.*?value: b'(.*?)'"
|
| 251 |
+
log_matches = re.findall(log_pattern, str(img.tag))
|
| 252 |
+
|
| 253 |
+
# If we detect any GeoTIFF indicators or raw tags, consider it a Brazil image
|
| 254 |
+
if (log_matches or has_geotiff_indicators) and not pixel_scale_tag:
|
| 255 |
+
logging.info(f"GeoTIFF indicators detected in image")
|
| 256 |
+
|
| 257 |
+
# Remove hardcoded Brazil coordinates
|
| 258 |
+
# Try to extract values from raw tag data if possible
|
| 259 |
+
try:
|
| 260 |
+
# Parse the modelPixelScale if available
|
| 261 |
+
if log_matches:
|
| 262 |
+
logging.info(f"Found raw pixel scale data: {log_matches[0]}")
|
| 263 |
+
# We'll continue with the standard TIFF tag processing below
|
| 264 |
+
except Exception as e:
|
| 265 |
+
logging.error(f"Error parsing raw tag data: {str(e)}")
|
| 266 |
+
|
| 267 |
+
if pixel_scale_tag and tiepoint_tag:
|
| 268 |
+
# Extract pixel scale (x, y)
|
| 269 |
+
x_scale = float(pixel_scale_tag[0])
|
| 270 |
+
y_scale = float(pixel_scale_tag[1])
|
| 271 |
+
|
| 272 |
+
# Extract model tiepoint (raster origin)
|
| 273 |
+
i, j, k = float(tiepoint_tag[0]), float(tiepoint_tag[1]), float(tiepoint_tag[2])
|
| 274 |
+
x, y, z = float(tiepoint_tag[3]), float(tiepoint_tag[4]), float(tiepoint_tag[5])
|
| 275 |
+
|
| 276 |
+
# Calculate bounds based on image dimensions
|
| 277 |
+
width, height = img.size
|
| 278 |
+
|
| 279 |
+
# Calculate bounds
|
| 280 |
+
min_lon = x
|
| 281 |
+
max_lat = y
|
| 282 |
+
max_lon = x + width * x_scale
|
| 283 |
+
min_lat = y - height * y_scale
|
| 284 |
+
|
| 285 |
+
logging.info(f"Extracted geo bounds: {min_lon},{min_lat} to {max_lon},{max_lat}")
|
| 286 |
+
return min_lat, min_lon, max_lat, max_lon
|
| 287 |
+
|
| 288 |
+
logging.info("No valid geospatial metadata found in TIFF")
|
| 289 |
+
|
| 290 |
+
# Check for EXIF GPS data (typically in JPEG)
|
| 291 |
+
elif hasattr(img, '_getexif') and img._getexif():
|
| 292 |
+
exif = img._getexif()
|
| 293 |
+
if exif and 34853 in exif: # 34853 is the GPS Info tag
|
| 294 |
+
gps_info = exif[34853]
|
| 295 |
+
|
| 296 |
+
# Extract GPS data
|
| 297 |
+
if 1 in gps_info and 2 in gps_info and 3 in gps_info and 4 in gps_info:
|
| 298 |
+
# Latitude
|
| 299 |
+
lat_ref = gps_info[1] # 'N' or 'S'
|
| 300 |
+
lat = gps_info[2] # ((deg_num, deg_denom), (min_num, min_denom), (sec_num, sec_denom))
|
| 301 |
+
lat_val = lat[0][0]/lat[0][1] + lat[1][0]/(lat[1][1]*60) + lat[2][0]/(lat[2][1]*3600)
|
| 302 |
+
if lat_ref == 'S':
|
| 303 |
+
lat_val = -lat_val
|
| 304 |
+
|
| 305 |
+
# Longitude
|
| 306 |
+
lon_ref = gps_info[3] # 'E' or 'W'
|
| 307 |
+
lon = gps_info[4]
|
| 308 |
+
lon_val = lon[0][0]/lon[0][1] + lon[1][0]/(lon[1][1]*60) + lon[2][0]/(lon[2][1]*3600)
|
| 309 |
+
if lon_ref == 'W':
|
| 310 |
+
lon_val = -lon_val
|
| 311 |
+
|
| 312 |
+
# Create a small region around the point
|
| 313 |
+
delta = 0.01 # ~1km at the equator
|
| 314 |
+
min_lat = lat_val - delta
|
| 315 |
+
min_lon = lon_val - delta
|
| 316 |
+
max_lat = lat_val + delta
|
| 317 |
+
max_lon = lon_val + delta
|
| 318 |
+
|
| 319 |
+
logging.info(f"Extracted EXIF GPS bounds: {min_lon},{min_lat} to {max_lon},{max_lat}")
|
| 320 |
+
return min_lat, min_lon, max_lat, max_lon
|
| 321 |
+
|
| 322 |
+
logging.info("No valid GPS metadata found in EXIF")
|
| 323 |
+
|
| 324 |
+
# If we get here, we couldn't extract coordinates
|
| 325 |
+
logging.warning("Could not extract geospatial coordinates from image")
|
| 326 |
+
return None
|
| 327 |
+
except Exception as e:
|
| 328 |
+
logging.error(f"Error extracting geo coordinates: {str(e)}")
|
| 329 |
+
return None
|
| 330 |
+
|
| 331 |
+
def convert_to_geojson_with_transform(polygons, image_height, image_width,
|
| 332 |
+
min_lat=None, min_lon=None, max_lat=None, max_lon=None):
|
| 333 |
+
"""
|
| 334 |
+
Convert polygons to GeoJSON with proper geographic transformation.
|
| 335 |
+
|
| 336 |
+
Args:
|
| 337 |
+
polygons (list): List of shapely Polygon objects
|
| 338 |
+
image_height (int): Height of the source image
|
| 339 |
+
image_width (int): Width of the source image
|
| 340 |
+
min_lat (float, optional): Minimum latitude for geographic bounds
|
| 341 |
+
min_lon (float, optional): Minimum longitude for geographic bounds
|
| 342 |
+
max_lat (float, optional): Maximum latitude for geographic bounds
|
| 343 |
+
max_lon (float, optional): Maximum longitude for geographic bounds
|
| 344 |
+
|
| 345 |
+
Returns:
|
| 346 |
+
dict: GeoJSON object
|
| 347 |
+
"""
|
| 348 |
+
# Set default geographic bounds if not provided
|
| 349 |
+
if None in (min_lon, min_lat, max_lon, max_lat):
|
| 350 |
+
logging.warning("No geographic coordinates provided for GeoJSON transformation. Using default values.")
|
| 351 |
+
# Default to somewhere neutral (not in New York)
|
| 352 |
+
min_lon, min_lat = -98.0, 32.0 # Central US
|
| 353 |
+
max_lon, max_lat = -96.0, 34.0
|
| 354 |
+
|
| 355 |
+
# Create a GeoJSON feature collection
|
| 356 |
+
geojson = {
|
| 357 |
+
"type": "FeatureCollection",
|
| 358 |
+
"features": []
|
| 359 |
+
}
|
| 360 |
+
|
| 361 |
+
# Function to transform pixel coordinates to geographic coordinates
|
| 362 |
+
def transform_point(x, y):
|
| 363 |
+
# Linear interpolation
|
| 364 |
+
lon = min_lon + (x / image_width) * (max_lon - min_lon)
|
| 365 |
+
# Invert y-axis for geographic coordinates
|
| 366 |
+
lat = max_lat - (y / image_height) * (max_lat - min_lat)
|
| 367 |
+
return lon, lat
|
| 368 |
+
|
| 369 |
+
# Convert each polygon to a GeoJSON feature
|
| 370 |
+
for i, polygon in enumerate(polygons):
|
| 371 |
+
# Extract coordinates
|
| 372 |
+
coords = list(polygon.exterior.coords)
|
| 373 |
+
|
| 374 |
+
# Transform coordinates to geographic space
|
| 375 |
+
geo_coords = [transform_point(x, y) for x, y in coords]
|
| 376 |
+
|
| 377 |
+
# Create GeoJSON geometry
|
| 378 |
+
geometry = {
|
| 379 |
+
"type": "Polygon",
|
| 380 |
+
"coordinates": [geo_coords]
|
| 381 |
+
}
|
| 382 |
+
|
| 383 |
+
# Create GeoJSON feature
|
| 384 |
+
feature = {
|
| 385 |
+
"type": "Feature",
|
| 386 |
+
"id": i + 1,
|
| 387 |
+
"properties": {
|
| 388 |
+
"name": f"Feature {i+1}"
|
| 389 |
+
},
|
| 390 |
+
"geometry": geometry
|
| 391 |
+
}
|
| 392 |
+
|
| 393 |
+
geojson["features"].append(feature)
|
| 394 |
+
|
| 395 |
+
return geojson
|
| 396 |
+
|
| 397 |
+
def process_image_to_geojson(image_path, feature_type="buildings", original_file_path=None):
|
| 398 |
+
"""
|
| 399 |
+
Complete pipeline to convert an image to a simplified GeoJSON.
|
| 400 |
+
|
| 401 |
+
Args:
|
| 402 |
+
image_path (str): Path to the processed image
|
| 403 |
+
feature_type (str): Type of features to extract ("buildings", "trees", "water", "roads")
|
| 404 |
+
original_file_path (str, optional): Path to the original uploaded file
|
| 405 |
+
|
| 406 |
+
Returns:
|
| 407 |
+
dict: GeoJSON object
|
| 408 |
+
"""
|
| 409 |
+
try:
|
| 410 |
+
# Open image to get dimensions
|
| 411 |
+
img = Image.open(image_path)
|
| 412 |
+
width, height = img.size
|
| 413 |
+
|
| 414 |
+
# Import segmentation module here to avoid circular imports
|
| 415 |
+
from utils.segmentation import segment_and_extract_features
|
| 416 |
+
|
| 417 |
+
# Extract features using advanced segmentation
|
| 418 |
+
_, polygons = segment_and_extract_features(
|
| 419 |
+
image_path,
|
| 420 |
+
output_mask_path=None,
|
| 421 |
+
feature_type=feature_type,
|
| 422 |
+
min_area=50,
|
| 423 |
+
simplify_tolerance=2.0,
|
| 424 |
+
merge_distance=5.0
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
if not polygons:
|
| 428 |
+
logging.warning("No polygons found in the image after segmentation")
|
| 429 |
+
return {"type": "FeatureCollection", "features": []}
|
| 430 |
+
|
| 431 |
+
# Use the provided original file path if available
|
| 432 |
+
original_image_path = original_file_path
|
| 433 |
+
|
| 434 |
+
# If no original file path was provided, try to find it
|
| 435 |
+
if not original_image_path and "_processed" in image_path:
|
| 436 |
+
original_image_path = image_path.replace("_processed", "")
|
| 437 |
+
# Try the original image path but replace the extension with common formats
|
| 438 |
+
if not os.path.exists(original_image_path):
|
| 439 |
+
base_path = original_image_path.rsplit('.', 1)[0]
|
| 440 |
+
for ext in ['.tif', '.tiff', '.jpg', '.jpeg', '.png']:
|
| 441 |
+
if os.path.exists(base_path + ext):
|
| 442 |
+
original_image_path = base_path + ext
|
| 443 |
+
break
|
| 444 |
+
|
| 445 |
+
logging.info(f"Using original image path: {original_image_path}")
|
| 446 |
+
|
| 447 |
+
# Extract bounds from image if possible
|
| 448 |
+
coords = None
|
| 449 |
+
if original_image_path and os.path.exists(original_image_path):
|
| 450 |
+
logging.info(f"Checking original image for geospatial data: {original_image_path}")
|
| 451 |
+
coords = extract_geo_coordinates_from_image(original_image_path)
|
| 452 |
+
|
| 453 |
+
if not coords:
|
| 454 |
+
logging.info("Checking processed image for geospatial data")
|
| 455 |
+
coords = extract_geo_coordinates_from_image(image_path)
|
| 456 |
+
|
| 457 |
+
# Use extracted coordinates or defaults
|
| 458 |
+
if coords:
|
| 459 |
+
min_lat, min_lon, max_lat, max_lon = coords
|
| 460 |
+
logging.info(f"Using extracted coordinates: {min_lon},{min_lat} to {max_lon},{max_lat}")
|
| 461 |
+
else:
|
| 462 |
+
# Try one more time with rasterio directly on the original image if it exists
|
| 463 |
+
if original_image_path and os.path.exists(original_image_path) and original_image_path.lower().endswith(('.tif', '.tiff')):
|
| 464 |
+
try:
|
| 465 |
+
import rasterio
|
| 466 |
+
from rasterio.warp import transform_bounds
|
| 467 |
+
|
| 468 |
+
with rasterio.open(original_image_path) as src:
|
| 469 |
+
if src.crs is not None:
|
| 470 |
+
bounds = src.bounds
|
| 471 |
+
if src.crs.to_epsg() != 4326:
|
| 472 |
+
west, south, east, north = transform_bounds(
|
| 473 |
+
src.crs, 'EPSG:4326',
|
| 474 |
+
bounds.left, bounds.bottom, bounds.right, bounds.top
|
| 475 |
+
)
|
| 476 |
+
else:
|
| 477 |
+
west, south, east, north = bounds
|
| 478 |
+
|
| 479 |
+
min_lat, min_lon, max_lat, max_lon = south, west, north, east
|
| 480 |
+
logging.info(f"Using coordinates from rasterio: {min_lon},{min_lat} to {max_lon},{max_lat}")
|
| 481 |
+
except Exception as e:
|
| 482 |
+
logging.warning(f"Failed to extract coordinates with rasterio: {str(e)}")
|
| 483 |
+
logging.warning("No coordinates found in image, using default location in Central US")
|
| 484 |
+
min_lat, min_lon = 32.0, -98.0 # Central US
|
| 485 |
+
max_lat, max_lon = 34.0, -96.0
|
| 486 |
+
else:
|
| 487 |
+
logging.warning("No coordinates found in image, using default location in Central US")
|
| 488 |
+
min_lat, min_lon = 32.0, -98.0 # Central US
|
| 489 |
+
max_lat, max_lon = 34.0, -96.0
|
| 490 |
+
|
| 491 |
+
# Convert to GeoJSON with proper transformation
|
| 492 |
+
geojson = convert_to_geojson_with_transform(
|
| 493 |
+
polygons, height, width,
|
| 494 |
+
min_lat=min_lat, min_lon=min_lon,
|
| 495 |
+
max_lat=max_lat, max_lon=max_lon
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
return geojson
|
| 499 |
+
|
| 500 |
+
except Exception as e:
|
| 501 |
+
logging.error(f"Error in GeoJSON processing: {str(e)}")
|
| 502 |
+
return {"type": "FeatureCollection", "features": []}
|
utils/image_processing.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import uuid
|
| 3 |
+
import logging
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image, ImageEnhance, ImageFilter
|
| 6 |
+
import cv2
|
| 7 |
+
|
| 8 |
+
def process_image(image_path, output_folder):
|
| 9 |
+
"""
|
| 10 |
+
Process the input image for geospatial analysis:
|
| 11 |
+
- Convert to grayscale
|
| 12 |
+
- Apply threshold to highlight features
|
| 13 |
+
- Apply noise reduction
|
| 14 |
+
- Apply edge detection
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
image_path (str): Path to the input image
|
| 18 |
+
output_folder (str): Directory to save processed images
|
| 19 |
+
|
| 20 |
+
Returns:
|
| 21 |
+
str: Path to the processed image
|
| 22 |
+
"""
|
| 23 |
+
try:
|
| 24 |
+
logging.info(f"Processing image: {image_path}")
|
| 25 |
+
|
| 26 |
+
# Open the image
|
| 27 |
+
img = Image.open(image_path)
|
| 28 |
+
|
| 29 |
+
# Convert to RGB if it's not already
|
| 30 |
+
if img.mode != 'RGB':
|
| 31 |
+
img = img.convert('RGB')
|
| 32 |
+
|
| 33 |
+
# Convert to numpy array for OpenCV processing
|
| 34 |
+
img_array = np.array(img)
|
| 35 |
+
|
| 36 |
+
# Convert to grayscale
|
| 37 |
+
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
| 38 |
+
|
| 39 |
+
# Apply Gaussian blur for noise reduction
|
| 40 |
+
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
|
| 41 |
+
|
| 42 |
+
# Apply adaptive thresholding
|
| 43 |
+
thresh = cv2.adaptiveThreshold(
|
| 44 |
+
blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 45 |
+
cv2.THRESH_BINARY_INV, 11, 2
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Edge detection using Canny algorithm
|
| 49 |
+
edges = cv2.Canny(thresh, 50, 150)
|
| 50 |
+
|
| 51 |
+
# Morphological operations to clean up the result
|
| 52 |
+
kernel = np.ones((3, 3), np.uint8)
|
| 53 |
+
cleaned = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
|
| 54 |
+
|
| 55 |
+
# Convert back to PIL Image
|
| 56 |
+
processed_img = Image.fromarray(cleaned)
|
| 57 |
+
|
| 58 |
+
# Save the processed image
|
| 59 |
+
processed_filename = f"{uuid.uuid4().hex}_processed.png"
|
| 60 |
+
output_path = os.path.join(output_folder, processed_filename)
|
| 61 |
+
processed_img.save(output_path)
|
| 62 |
+
|
| 63 |
+
logging.info(f"Image processing complete: {output_path}")
|
| 64 |
+
return output_path
|
| 65 |
+
|
| 66 |
+
except Exception as e:
|
| 67 |
+
logging.error(f"Error in image processing: {str(e)}")
|
| 68 |
+
raise Exception(f"Image processing failed: {str(e)}")
|
utils/segmentation.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Segmentation utilities for image processing inspired by CLIPSeg techniques.
|
| 3 |
+
This is a simplified version that does not require the full transformers library.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import logging
|
| 8 |
+
import numpy as np
|
| 9 |
+
import cv2
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from utils.geospatial import extract_contours, simplify_polygons, regularize_polygons, merge_nearby_polygons
|
| 12 |
+
|
| 13 |
+
def segment_by_color_threshold(image_path, output_path=None,
|
| 14 |
+
threshold=127, color_channel=1,
|
| 15 |
+
smoothing_sigma=1.0):
|
| 16 |
+
"""
|
| 17 |
+
Segment an image based on color thresholding.
|
| 18 |
+
This is a simple segmentation inspired by more complex models like CLIPSeg.
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
image_path (str): Path to the input image
|
| 22 |
+
output_path (str, optional): Path to save the segmentation mask
|
| 23 |
+
threshold (int): Pixel intensity threshold (0-255)
|
| 24 |
+
color_channel (int): Color channel to use for thresholding (0=R, 1=G, 2=B)
|
| 25 |
+
smoothing_sigma (float): Gaussian smoothing sigma
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
numpy.ndarray: Segmentation mask
|
| 29 |
+
"""
|
| 30 |
+
try:
|
| 31 |
+
# Read the image
|
| 32 |
+
img = cv2.imread(image_path)
|
| 33 |
+
if img is None:
|
| 34 |
+
# Try using PIL if OpenCV fails
|
| 35 |
+
pil_img = Image.open(image_path).convert('RGB')
|
| 36 |
+
img = np.array(pil_img)
|
| 37 |
+
img = img[:, :, ::-1] # RGB to BGR for OpenCV compatibility
|
| 38 |
+
|
| 39 |
+
# Split channels and use the specified channel for segmentation
|
| 40 |
+
b, g, r = cv2.split(img)
|
| 41 |
+
channels = [r, g, b]
|
| 42 |
+
|
| 43 |
+
if 0 <= color_channel < 3:
|
| 44 |
+
channel = channels[color_channel]
|
| 45 |
+
else:
|
| 46 |
+
# Use grayscale if invalid channel specified
|
| 47 |
+
channel = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 48 |
+
|
| 49 |
+
# Apply Gaussian blur to reduce noise
|
| 50 |
+
if smoothing_sigma > 0:
|
| 51 |
+
channel = cv2.GaussianBlur(channel, (0, 0), smoothing_sigma)
|
| 52 |
+
|
| 53 |
+
# Apply thresholding to create binary mask
|
| 54 |
+
_, mask = cv2.threshold(channel, threshold, 255, cv2.THRESH_BINARY)
|
| 55 |
+
|
| 56 |
+
# Save the mask if output path is provided
|
| 57 |
+
if output_path:
|
| 58 |
+
cv2.imwrite(output_path, mask)
|
| 59 |
+
logging.info(f"Saved segmentation mask to {output_path}")
|
| 60 |
+
|
| 61 |
+
return mask
|
| 62 |
+
|
| 63 |
+
except Exception as e:
|
| 64 |
+
logging.error(f"Error in segmentation: {str(e)}")
|
| 65 |
+
return None
|
| 66 |
+
|
| 67 |
+
def segment_by_adaptive_threshold(image_path, output_path=None,
|
| 68 |
+
block_size=11, c=2,
|
| 69 |
+
smoothing_sigma=1.0):
|
| 70 |
+
"""
|
| 71 |
+
Segment an image using adaptive thresholding for better handling of
|
| 72 |
+
lighting variations.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
image_path (str): Path to the input image
|
| 76 |
+
output_path (str, optional): Path to save the segmentation mask
|
| 77 |
+
block_size (int): Size of the pixel neighborhood for threshold calculation
|
| 78 |
+
c (int): Constant subtracted from the mean
|
| 79 |
+
smoothing_sigma (float): Gaussian smoothing sigma
|
| 80 |
+
|
| 81 |
+
Returns:
|
| 82 |
+
numpy.ndarray: Segmentation mask
|
| 83 |
+
"""
|
| 84 |
+
try:
|
| 85 |
+
# Read the image
|
| 86 |
+
img = cv2.imread(image_path)
|
| 87 |
+
if img is None:
|
| 88 |
+
# Try using PIL if OpenCV fails
|
| 89 |
+
pil_img = Image.open(image_path).convert('RGB')
|
| 90 |
+
img = np.array(pil_img)
|
| 91 |
+
img = img[:, :, ::-1] # RGB to BGR for OpenCV compatibility
|
| 92 |
+
|
| 93 |
+
# Convert to grayscale
|
| 94 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 95 |
+
|
| 96 |
+
# Apply Gaussian blur to reduce noise
|
| 97 |
+
if smoothing_sigma > 0:
|
| 98 |
+
gray = cv2.GaussianBlur(gray, (0, 0), smoothing_sigma)
|
| 99 |
+
|
| 100 |
+
# Apply adaptive thresholding
|
| 101 |
+
mask = cv2.adaptiveThreshold(
|
| 102 |
+
gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 103 |
+
cv2.THRESH_BINARY, block_size, c
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
# Save the mask if output path is provided
|
| 107 |
+
if output_path:
|
| 108 |
+
cv2.imwrite(output_path, mask)
|
| 109 |
+
logging.info(f"Saved segmentation mask to {output_path}")
|
| 110 |
+
|
| 111 |
+
return mask
|
| 112 |
+
|
| 113 |
+
except Exception as e:
|
| 114 |
+
logging.error(f"Error in segmentation: {str(e)}")
|
| 115 |
+
return None
|
| 116 |
+
|
| 117 |
+
def segment_by_otsu(image_path, output_path=None, smoothing_sigma=1.0):
|
| 118 |
+
"""
|
| 119 |
+
Segment an image using Otsu's automatic thresholding method.
|
| 120 |
+
|
| 121 |
+
Args:
|
| 122 |
+
image_path (str): Path to the input image
|
| 123 |
+
output_path (str, optional): Path to save the segmentation mask
|
| 124 |
+
smoothing_sigma (float): Gaussian smoothing sigma
|
| 125 |
+
|
| 126 |
+
Returns:
|
| 127 |
+
numpy.ndarray: Segmentation mask
|
| 128 |
+
"""
|
| 129 |
+
try:
|
| 130 |
+
# Read the image
|
| 131 |
+
img = cv2.imread(image_path)
|
| 132 |
+
if img is None:
|
| 133 |
+
# Try using PIL if OpenCV fails
|
| 134 |
+
pil_img = Image.open(image_path).convert('RGB')
|
| 135 |
+
img = np.array(pil_img)
|
| 136 |
+
img = img[:, :, ::-1] # RGB to BGR for OpenCV compatibility
|
| 137 |
+
|
| 138 |
+
# Convert to grayscale
|
| 139 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 140 |
+
|
| 141 |
+
# Apply Gaussian blur to reduce noise
|
| 142 |
+
if smoothing_sigma > 0:
|
| 143 |
+
gray = cv2.GaussianBlur(gray, (0, 0), smoothing_sigma)
|
| 144 |
+
|
| 145 |
+
# Apply Otsu's thresholding
|
| 146 |
+
_, mask = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
| 147 |
+
|
| 148 |
+
# Save the mask if output path is provided
|
| 149 |
+
if output_path:
|
| 150 |
+
cv2.imwrite(output_path, mask)
|
| 151 |
+
logging.info(f"Saved segmentation mask to {output_path}")
|
| 152 |
+
|
| 153 |
+
return mask
|
| 154 |
+
|
| 155 |
+
except Exception as e:
|
| 156 |
+
logging.error(f"Error in segmentation: {str(e)}")
|
| 157 |
+
return None
|
| 158 |
+
|
| 159 |
+
def segment_and_extract_features(image_path, output_mask_path=None,
|
| 160 |
+
feature_type="buildings",
|
| 161 |
+
min_area=50, simplify_tolerance=2.0,
|
| 162 |
+
merge_distance=5.0):
|
| 163 |
+
"""
|
| 164 |
+
Complete pipeline for segmentation and feature extraction.
|
| 165 |
+
|
| 166 |
+
Args:
|
| 167 |
+
image_path (str): Path to the input image
|
| 168 |
+
output_mask_path (str, optional): Path to save the segmentation mask
|
| 169 |
+
feature_type (str): Type of features to extract ("buildings", "trees", "water", "roads")
|
| 170 |
+
min_area (int): Minimum feature area to keep
|
| 171 |
+
simplify_tolerance (float): Tolerance for polygon simplification
|
| 172 |
+
merge_distance (float): Distance for merging nearby polygons
|
| 173 |
+
|
| 174 |
+
Returns:
|
| 175 |
+
tuple: (mask, polygons) - Segmentation mask and list of simplified Shapely polygons
|
| 176 |
+
"""
|
| 177 |
+
# Choose segmentation method based on feature type
|
| 178 |
+
if feature_type.lower() == "buildings":
|
| 179 |
+
# Buildings typically have clean edges and good contrast
|
| 180 |
+
mask = segment_by_adaptive_threshold(
|
| 181 |
+
image_path, output_mask_path,
|
| 182 |
+
block_size=15, c=2, smoothing_sigma=1.0
|
| 183 |
+
)
|
| 184 |
+
elif feature_type.lower() == "trees" or feature_type.lower() == "vegetation":
|
| 185 |
+
# Trees typically strong in green channel
|
| 186 |
+
mask = segment_by_color_threshold(
|
| 187 |
+
image_path, output_mask_path,
|
| 188 |
+
threshold=140, color_channel=1, smoothing_sigma=1.5
|
| 189 |
+
)
|
| 190 |
+
elif feature_type.lower() == "water":
|
| 191 |
+
# Water typically has distinct spectral properties
|
| 192 |
+
mask = segment_by_color_threshold(
|
| 193 |
+
image_path, output_mask_path,
|
| 194 |
+
threshold=120, color_channel=0, smoothing_sigma=2.0
|
| 195 |
+
)
|
| 196 |
+
else:
|
| 197 |
+
# Default to Otsu for unknown feature types
|
| 198 |
+
mask = segment_by_otsu(
|
| 199 |
+
image_path, output_mask_path, smoothing_sigma=1.0
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
if mask is None:
|
| 203 |
+
logging.error("Segmentation failed")
|
| 204 |
+
return None, []
|
| 205 |
+
|
| 206 |
+
# Save mask temporarily if needed for contour extraction
|
| 207 |
+
temp_mask_path = None
|
| 208 |
+
if not output_mask_path:
|
| 209 |
+
temp_mask_path = os.path.join(
|
| 210 |
+
os.path.dirname(image_path),
|
| 211 |
+
f"{os.path.splitext(os.path.basename(image_path))[0]}_mask.png"
|
| 212 |
+
)
|
| 213 |
+
cv2.imwrite(temp_mask_path, mask)
|
| 214 |
+
mask_path = temp_mask_path
|
| 215 |
+
else:
|
| 216 |
+
mask_path = output_mask_path
|
| 217 |
+
|
| 218 |
+
# Extract contours from the mask
|
| 219 |
+
polygons = extract_contours(mask_path, min_area=min_area)
|
| 220 |
+
logging.info(f"Extracted {len(polygons)} initial polygons")
|
| 221 |
+
|
| 222 |
+
# Clean up temporary file if created
|
| 223 |
+
if temp_mask_path and os.path.exists(temp_mask_path):
|
| 224 |
+
os.remove(temp_mask_path)
|
| 225 |
+
|
| 226 |
+
# Simplify polygons
|
| 227 |
+
polygons = simplify_polygons(polygons, tolerance=simplify_tolerance)
|
| 228 |
+
|
| 229 |
+
# If buildings, regularize them to make more rectangular
|
| 230 |
+
if feature_type.lower() == "buildings":
|
| 231 |
+
polygons = regularize_polygons(polygons)
|
| 232 |
+
|
| 233 |
+
# Merge nearby polygons to reduce count
|
| 234 |
+
polygons = merge_nearby_polygons(polygons, distance_threshold=merge_distance)
|
| 235 |
+
logging.info(f"After processing: {len(polygons)} polygons")
|
| 236 |
+
|
| 237 |
+
return mask, polygons
|