Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow.keras.preprocessing import image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load your trained TensorFlow face recognition model
|
7 |
+
model = tf.keras.models.load_model(r"C:\Users\tiruv\Downloads\1.h5")
|
8 |
+
|
9 |
+
# Map the predicted label to a class name
|
10 |
+
class_names = {
|
11 |
+
0: "akilesh",
|
12 |
+
1: "aswath",
|
13 |
+
2: "bhuvan",
|
14 |
+
3: "karthikeyan",
|
15 |
+
4: "lalpradhap",
|
16 |
+
5: "muhilan",
|
17 |
+
6: "ragavan",
|
18 |
+
7: "sanjay",
|
19 |
+
8: "seenivas",
|
20 |
+
9: "sharvesh"
|
21 |
+
}
|
22 |
+
|
23 |
+
def predict_image(img):
|
24 |
+
if img is None:
|
25 |
+
return "No image provided"
|
26 |
+
|
27 |
+
try:
|
28 |
+
# Preprocess the image
|
29 |
+
img = img.resize((224, 224)) # Ensure the size matches your training data
|
30 |
+
img_array = image.img_to_array(img)
|
31 |
+
img_array = tf.expand_dims(img_array, 0) # Create a batch of size 1
|
32 |
+
|
33 |
+
# Predict the class
|
34 |
+
predictions = model.predict(img_array)
|
35 |
+
predicted_class = np.argmax(predictions[0])
|
36 |
+
|
37 |
+
# Map prediction to class name
|
38 |
+
predicted_class_name = class_names.get(predicted_class, "Unknown class")
|
39 |
+
|
40 |
+
return predicted_class_name
|
41 |
+
|
42 |
+
except Exception as e:
|
43 |
+
return f"Error: {str(e)}"
|
44 |
+
|
45 |
+
# Create Gradio interface
|
46 |
+
gr.Interface(fn=predict_image,
|
47 |
+
inputs=gr.Image(type="pil"), # Default configuration
|
48 |
+
outputs="text",
|
49 |
+
title="Image Classifier",
|
50 |
+
description="Upload an image to classify it").launch(share=True)
|