Neurolingua commited on
Commit
e21fa9d
·
verified ·
1 Parent(s): 9919f79

Update teacher_function.py

Browse files
Files changed (1) hide show
  1. teacher_function.py +44 -62
teacher_function.py CHANGED
@@ -1,3 +1,4 @@
 
1
  from ai71 import AI71
2
  from PyPDF2 import PdfReader
3
  from pdf2image import convert_from_path
@@ -19,23 +20,18 @@ def extract_text_from_pdf(pdf_file):
19
  return text
20
 
21
  def generate_questions_from_text(text, no_of_questions, marks_per_part, no_parts):
22
- ai71 = AI71(AI71_API_KEY)
23
- messages = [
 
24
  {"role": "system", "content": "You are a teaching assistant"},
25
  {"role": "user",
26
  "content": f"Give your own {no_of_questions} questions under each part for {no_parts} parts with {marks_per_part} marks for each part. Note that all questions must be from the topics of {text}"}
27
- ]
28
-
29
- questions = []
30
- for chunk in ai71.chat.completions.create(
31
- model="tiiuae/falcon-180b-chat",
32
- messages=messages,
33
- stream=True,
34
- ):
35
- if chunk.choices[0].delta.content:
36
- questions.append(chunk.choices[0].delta.content)
37
 
38
- return "".join(questions)
 
 
 
39
 
40
  def extract_text_from_image(image_path):
41
  # Load the image
@@ -69,23 +65,16 @@ guidelines:
69
  Note:Provide only marks for each answers. dont provide anything other than that.
70
  Format:
71
  1.Question no: Marks,etc"""
72
-
73
- messages = [
 
74
  {"role": "system", "content": "You are a strict answer evaluator. "},
75
  {"role": "user", "content": prompt}
76
  ]
77
-
78
- response_content = ""
79
- for chunk in AI71(AI71_API_KEY).chat.completions.create(
80
- model="tiiuae/falcon-180b-chat",
81
- messages=messages,
82
- stream=True
83
- ):
84
- if chunk.choices[0].delta.content:
85
- response_content += chunk.choices[0].delta.content
86
- print(response_content)
87
-
88
- return response_content
89
 
90
  def generate_student_report(name, age, cgpa, course, assigned_test, ai_test, interests, difficulty, courses_taken):
91
  prompt = f"""
@@ -99,25 +88,19 @@ def generate_student_report(name, age, cgpa, course, assigned_test, ai_test, int
99
  Difficulty in: {difficulty}
100
  Courses Taken: {courses_taken}
101
  Use the above student data to generate a neat personalized report and suggested teaching methods."""
102
-
103
- client = AI71(AI71_API_KEY)
104
-
105
- response = client.chat.completions.create(
106
- model="tiiuae/falcon-180B-chat",
107
- messages=[
108
  {"role": "system", "content": "You are a student report generator."},
109
  {"role": "user", "content": prompt}
110
  ]
111
- )
112
-
113
- report = response.choices[0].message.content if response.choices and response.choices[
114
- 0].message else "No report generated."
115
- print(report)
116
-
117
- return report
118
  def generate_timetable_module(data,hours_per_day,days_per_week,semester_end_date,subjects):
119
- response = AI71(AI71_API_KEY).chat.completions.create(
120
- model="tiiuae/falcon-180B-chat",
121
  messages=[
122
  {"role": "system", "content": "You are a helpful assistant."},
123
  {"role": "user", "content": f"Create a timetable starting from Monday based on the following inputs:\n"
@@ -127,26 +110,25 @@ def generate_timetable_module(data,hours_per_day,days_per_week,semester_end_date
127
  f"- Subjects: {', '.join(subjects)}\n"}
128
  ]
129
  )
130
-
131
- # Access the response content correctly
132
- return( response.choices[0].message.content if response.choices and response.choices[0].message else "No timetable generated.")
133
-
134
  def cluster_topics(academic_topics):
135
  prompt = (
136
  "Please cluster the following academic topics into their respective subjects such as Mathematics, Physics, etc.: "
137
  + ", ".join(academic_topics))
138
  response = ""
139
- for chunk in AI71(AI71_API_KEY).chat.completions.create(
140
- model="tiiuae/falcon-180b-chat",
141
  messages=[
142
  {"role": "system", "content": "You are a helpful assistant."},
143
  {"role": "user", "content": prompt},
144
- ],
145
- stream=True,
146
- ):
147
- if chunk.choices[0].delta.content:
148
- response += chunk.choices[0].delta.content
149
- return response
150
 
151
  def generate_timetable_weak(clustered_subjects, hours_per_day):
152
  prompt = (
@@ -155,14 +137,14 @@ def generate_timetable_weak(clustered_subjects, hours_per_day):
155
  f"Also provide reference books and methods to teach the slow learners for each subject"
156
  )
157
  response = ""
158
- for chunk in AI71(AI71_API_KEY).chat.completions.create(
159
- model="tiiuae/falcon-180b-chat",
160
  messages=[
161
  {"role": "system", "content": "You are a helpful assistant."},
162
  {"role": "user", "content": prompt},
163
- ],
164
- stream=True,
165
- ):
166
- if chunk.choices[0].delta.content:
167
- response += chunk.choices[0].delta.content
168
- return response
 
1
+ from mistralai import Mistral
2
  from ai71 import AI71
3
  from PyPDF2 import PdfReader
4
  from pdf2image import convert_from_path
 
20
  return text
21
 
22
  def generate_questions_from_text(text, no_of_questions, marks_per_part, no_parts):
23
+ chat_response = client.chat.complete(
24
+ model=MODEL,
25
+ messages = [
26
  {"role": "system", "content": "You are a teaching assistant"},
27
  {"role": "user",
28
  "content": f"Give your own {no_of_questions} questions under each part for {no_parts} parts with {marks_per_part} marks for each part. Note that all questions must be from the topics of {text}"}
29
+ ]
 
 
 
 
 
 
 
 
 
30
 
31
+ )
32
+ response_content = chat_response.choices[0].message.content
33
+ return jsonify({"response": response_content})
34
+
35
 
36
  def extract_text_from_image(image_path):
37
  # Load the image
 
65
  Note:Provide only marks for each answers. dont provide anything other than that.
66
  Format:
67
  1.Question no: Marks,etc"""
68
+ chat_response = client.chat.complete(
69
+ model=MODEL,
70
+ messages =[
71
  {"role": "system", "content": "You are a strict answer evaluator. "},
72
  {"role": "user", "content": prompt}
73
  ]
74
+ )
75
+ response_content = chat_response.choices[0].message.content
76
+ return jsonify({"response": response_content})
77
+
 
 
 
 
 
 
 
 
78
 
79
  def generate_student_report(name, age, cgpa, course, assigned_test, ai_test, interests, difficulty, courses_taken):
80
  prompt = f"""
 
88
  Difficulty in: {difficulty}
89
  Courses Taken: {courses_taken}
90
  Use the above student data to generate a neat personalized report and suggested teaching methods."""
91
+ chat_response = client.chat.complete(
92
+ model=MODEL,
93
+ messages=[
 
 
 
94
  {"role": "system", "content": "You are a student report generator."},
95
  {"role": "user", "content": prompt}
96
  ]
97
+ )
98
+ response_content = chat_response.choices[0].message.content
99
+ return jsonify({"response": response_content})
100
+
 
 
 
101
  def generate_timetable_module(data,hours_per_day,days_per_week,semester_end_date,subjects):
102
+ chat_response = client.chat.complete(
103
+ model=MODEL,
104
  messages=[
105
  {"role": "system", "content": "You are a helpful assistant."},
106
  {"role": "user", "content": f"Create a timetable starting from Monday based on the following inputs:\n"
 
110
  f"- Subjects: {', '.join(subjects)}\n"}
111
  ]
112
  )
113
+ response_content = chat_response.choices[0].message.content
114
+ return jsonify({"response": response_content})
115
+
116
+
117
  def cluster_topics(academic_topics):
118
  prompt = (
119
  "Please cluster the following academic topics into their respective subjects such as Mathematics, Physics, etc.: "
120
  + ", ".join(academic_topics))
121
  response = ""
122
+ chat_response = client.chat.complete(
123
+ model=MODEL,
124
  messages=[
125
  {"role": "system", "content": "You are a helpful assistant."},
126
  {"role": "user", "content": prompt},
127
+ ]
128
+ )
129
+ response_content = chat_response.choices[0].message.content
130
+ return jsonify({"response": response_content})
131
+
 
132
 
133
  def generate_timetable_weak(clustered_subjects, hours_per_day):
134
  prompt = (
 
137
  f"Also provide reference books and methods to teach the slow learners for each subject"
138
  )
139
  response = ""
140
+ chat_response = client.chat.complete(
141
+ model=MODEL,
142
  messages=[
143
  {"role": "system", "content": "You are a helpful assistant."},
144
  {"role": "user", "content": prompt},
145
+ ]
146
+ )
147
+ response_content = chat_response.choices[0].message.content
148
+ return jsonify({"response": response_content})
149
+
150
+