Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,73 +1,39 @@
|
|
| 1 |
-
from flask import Flask, request
|
| 2 |
-
from twilio.twiml.messaging_response import MessagingResponse
|
| 3 |
-
from twilio.rest import Client
|
| 4 |
import os
|
| 5 |
-
import requests
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import shutil
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
from langchain.vectorstores.chroma import Chroma
|
| 10 |
-
from langchain.
|
| 11 |
-
from
|
| 12 |
-
from
|
| 13 |
-
from langchain.document_loaders.pdf import PyPDFDirectoryLoader
|
| 14 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 15 |
-
from langchain.schema.document import Document
|
| 16 |
-
import tempfile
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
account_sid = os.environ.get('TWILIO_ACCOUNT_SID')
|
| 46 |
-
auth_token = os.environ.get('TWILIO_AUTH_TOKEN')
|
| 47 |
-
client = Client(account_sid, auth_token)
|
| 48 |
-
from_whatsapp_number = 'whatsapp:+14155238886'
|
| 49 |
-
|
| 50 |
-
PROMPT_TEMPLATE = """
|
| 51 |
-
Answer the question based only on the following context:
|
| 52 |
-
{context}
|
| 53 |
-
---
|
| 54 |
-
Answer the question based on the above context: {question}
|
| 55 |
-
"""
|
| 56 |
-
|
| 57 |
-
from bs4 import BeautifulSoup
|
| 58 |
-
import requests
|
| 59 |
-
from requests.auth import HTTPBasicAuth
|
| 60 |
-
from PIL import Image
|
| 61 |
-
from io import BytesIO
|
| 62 |
-
import pandas as pd
|
| 63 |
-
from urllib.parse import urlparse
|
| 64 |
-
import os
|
| 65 |
-
from pypdf import PdfReader
|
| 66 |
-
from ai71 import AI71
|
| 67 |
-
import uuid
|
| 68 |
-
|
| 69 |
-
from inference_sdk import InferenceHTTPClient
|
| 70 |
-
import base64
|
| 71 |
|
| 72 |
AI71_API_KEY = os.environ.get('AI71_API_KEY')
|
| 73 |
|
|
@@ -76,7 +42,7 @@ def generate_response(query, chat_history):
|
|
| 76 |
for chunk in AI71(AI71_API_KEY).chat.completions.create(
|
| 77 |
model="tiiuae/falcon-180b-chat",
|
| 78 |
messages=[
|
| 79 |
-
{"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences.
|
| 80 |
{"role": "user", "content": f'''Answer the query based on history {chat_history}: {query}'''},
|
| 81 |
],
|
| 82 |
stream=True,
|
|
@@ -85,238 +51,22 @@ def generate_response(query, chat_history):
|
|
| 85 |
response += chunk.choices[0].delta.content
|
| 86 |
return response.replace("###", '').replace('\nUser:', '')
|
| 87 |
|
| 88 |
-
def
|
| 89 |
-
|
| 90 |
-
api_url="https://detect.roboflow.com",
|
| 91 |
-
api_key="oF1aC4b1FBCDtK8CoKx7"
|
| 92 |
-
)
|
| 93 |
-
result = CLIENT.infer(filepath, model_id="pest-detection-ueoco/1")
|
| 94 |
-
return result['predictions'][0]
|
| 95 |
|
| 96 |
-
|
| 97 |
-
def predict_disease(filepath):
|
| 98 |
-
CLIENT = InferenceHTTPClient(
|
| 99 |
-
api_url="https://classify.roboflow.com",
|
| 100 |
-
api_key="oF1aC4b1FBCDtK8CoKx7"
|
| 101 |
-
)
|
| 102 |
-
result = CLIENT.infer(filepath, model_id="plant-disease-detection-iefbi/1")
|
| 103 |
-
return result['predicted_classes'][0]
|
| 104 |
-
|
| 105 |
-
def convert_img(url, account_sid, auth_token):
|
| 106 |
-
try:
|
| 107 |
-
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
|
| 108 |
-
response.raise_for_status()
|
| 109 |
-
|
| 110 |
-
parsed_url = urlparse(url)
|
| 111 |
-
media_id = parsed_url.path.split('/')[-1]
|
| 112 |
-
filename = f"downloaded_media_{media_id}"
|
| 113 |
-
|
| 114 |
-
media_filepath = os.path.join(UPLOAD_FOLDER, filename)
|
| 115 |
-
with open(media_filepath, 'wb') as file:
|
| 116 |
-
file.write(response.content)
|
| 117 |
-
|
| 118 |
-
print(f"Media downloaded successfully and saved as {media_filepath}")
|
| 119 |
-
|
| 120 |
-
with open(media_filepath, 'rb') as img_file:
|
| 121 |
-
image = Image.open(img_file)
|
| 122 |
-
|
| 123 |
-
converted_filename = f"image.jpg"
|
| 124 |
-
converted_filepath = os.path.join(UPLOAD_FOLDER, converted_filename)
|
| 125 |
-
image.convert('RGB').save(converted_filepath, 'JPEG')
|
| 126 |
-
return converted_filepath
|
| 127 |
-
|
| 128 |
-
except requests.exceptions.HTTPError as err:
|
| 129 |
-
print(f"HTTP error occurred: {err}")
|
| 130 |
-
except Exception as err:
|
| 131 |
-
print(f"An error occurred: {err}")
|
| 132 |
-
|
| 133 |
-
def get_weather(city):
|
| 134 |
-
city = city.strip().replace(' ', '+')
|
| 135 |
-
r = requests.get(f'https://www.google.com/search?q=weather+in+{city}')
|
| 136 |
-
soup = BeautifulSoup(r.text, 'html.parser')
|
| 137 |
-
temperature = soup.find('div', attrs={'class': 'BNeawe iBp4i AP7Wnd'}).text
|
| 138 |
-
return temperature
|
| 139 |
-
|
| 140 |
-
from zenrows import ZenRowsClient
|
| 141 |
-
Zenrow_api = os.environ.get('Zenrow_api')
|
| 142 |
-
zenrows_client = ZenRowsClient(Zenrow_api)
|
| 143 |
-
|
| 144 |
-
def get_rates():
|
| 145 |
-
url = "https://www.kisandeals.com/mandiprices/ALL/TAMIL-NADU/ALL"
|
| 146 |
-
response = zenrows_client.get(url)
|
| 147 |
-
|
| 148 |
-
if response.status_code == 200:
|
| 149 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
| 150 |
-
rows = soup.select('table tbody tr')
|
| 151 |
-
data = {}
|
| 152 |
-
for row in rows:
|
| 153 |
-
columns = row.find_all('td')
|
| 154 |
-
if len(columns) >= 2:
|
| 155 |
-
commodity = columns[0].get_text(strip=True)
|
| 156 |
-
price = columns[1].get_text(strip=True)
|
| 157 |
-
if '₹' in price:
|
| 158 |
-
data[commodity] = price
|
| 159 |
-
return str(data) + " These are the prices for 1 kg"
|
| 160 |
-
|
| 161 |
-
def get_news():
|
| 162 |
-
news = []
|
| 163 |
-
url = "https://economictimes.indiatimes.com/news/economy/agriculture?from=mdr"
|
| 164 |
-
response = zenrows_client.get(url)
|
| 165 |
-
|
| 166 |
-
if response.status_code == 200:
|
| 167 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
| 168 |
-
headlines = soup.find_all("div", class_="eachStory")
|
| 169 |
-
for story in headlines:
|
| 170 |
-
headline = story.find('h3').text.strip()
|
| 171 |
-
news.append(headline)
|
| 172 |
-
return news
|
| 173 |
-
|
| 174 |
-
def download_and_save_as_txt(url, account_sid, auth_token):
|
| 175 |
-
try:
|
| 176 |
-
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
|
| 177 |
-
response.raise_for_status()
|
| 178 |
-
|
| 179 |
-
parsed_url = urlparse(url)
|
| 180 |
-
media_id = parsed_url.path.split('/')[-1]
|
| 181 |
-
filename = f"pdf_file.pdf"
|
| 182 |
-
|
| 183 |
-
txt_filepath = os.path.join(UPLOAD_FOLDER, filename)
|
| 184 |
-
with open(txt_filepath, 'wb') as file:
|
| 185 |
-
file.write(response.content)
|
| 186 |
-
|
| 187 |
-
print(f"Media downloaded successfully and saved as {txt_filepath}")
|
| 188 |
-
return txt_filepath
|
| 189 |
-
|
| 190 |
-
except requests.exceptions.HTTPError as err:
|
| 191 |
-
print(f"HTTP error occurred: {err}")
|
| 192 |
-
except Exception as err:
|
| 193 |
-
print(f"An error occurred: {err}")
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
def initialize_chroma():
|
| 197 |
-
try:
|
| 198 |
-
# Initialize Chroma
|
| 199 |
-
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=get_embedding_function())
|
| 200 |
-
# Perform an initial operation to ensure it works
|
| 201 |
-
db.similarity_search_with_score("test query", k=1)
|
| 202 |
-
print("Chroma initialized successfully.")
|
| 203 |
-
except Exception as e:
|
| 204 |
-
print(f"Error initializing Chroma: {e}")
|
| 205 |
-
|
| 206 |
-
initialize_chroma()
|
| 207 |
-
|
| 208 |
-
def query_rag(query_text: str):
|
| 209 |
-
embedding_function = get_embedding_function()
|
| 210 |
-
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
| 211 |
-
print(query_text)
|
| 212 |
-
# Check if the query is related to a PDF
|
| 213 |
-
if "from pdf" in query_text.lower() or "in pdf" in query_text.lower():
|
| 214 |
-
# Provide some context about handling PDFs
|
| 215 |
-
response_text = "I see you're asking about a PDF-related query. Let me check the context from the PDF."
|
| 216 |
-
else:
|
| 217 |
-
# Regular RAG functionality
|
| 218 |
-
response_text = "Your query is not related to PDFs. Please make sure your question is clear."
|
| 219 |
-
|
| 220 |
results = db.similarity_search_with_score(query_text, k=5)
|
| 221 |
|
| 222 |
if not results:
|
| 223 |
-
|
| 224 |
-
else:
|
| 225 |
-
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
|
| 226 |
-
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
|
| 227 |
-
prompt = prompt_template.format(context=context_text, question=query_text)
|
| 228 |
-
|
| 229 |
-
response = ''
|
| 230 |
-
for chunk in AI71(AI71_API_KEY).chat.completions.create(
|
| 231 |
-
model="tiiuae/falcon-180b-chat",
|
| 232 |
-
messages=[
|
| 233 |
-
{"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences."},
|
| 234 |
-
{"role": "user", "content": f'''Answer the following query based on the given context: {prompt}'''},
|
| 235 |
-
],
|
| 236 |
-
stream=True,
|
| 237 |
-
):
|
| 238 |
-
if chunk.choices[0].delta.content:
|
| 239 |
-
response += chunk.choices[0].delta.content
|
| 240 |
-
|
| 241 |
-
response_text = response.replace("###", '').replace('\nUser:', '')
|
| 242 |
-
|
| 243 |
-
return response_text
|
| 244 |
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
with open(file_path, 'wb') as file:
|
| 253 |
-
file.write(response.content)
|
| 254 |
-
|
| 255 |
-
print(f"File downloaded and saved as {file_path}")
|
| 256 |
-
return file_path
|
| 257 |
-
|
| 258 |
-
except requests.exceptions.HTTPError as err:
|
| 259 |
-
print(f"HTTP error occurred: {err}")
|
| 260 |
-
except Exception as err:
|
| 261 |
-
print(f"An error occurred: {err}")
|
| 262 |
-
return None
|
| 263 |
-
def save_pdf_and_update_database(pdf_filepath):
|
| 264 |
-
try:
|
| 265 |
-
document_loader = PyPDFDirectoryLoader(UPLOAD_FOLDER)
|
| 266 |
-
documents = document_loader.load()
|
| 267 |
-
|
| 268 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 269 |
-
chunk_size=800,
|
| 270 |
-
chunk_overlap=80,
|
| 271 |
-
length_function=len,
|
| 272 |
-
is_separator_regex=False,
|
| 273 |
-
)
|
| 274 |
-
chunks = text_splitter.split_documents(documents)
|
| 275 |
-
|
| 276 |
-
add_to_chroma(chunks)
|
| 277 |
-
print(f"PDF processed and data updated in Chroma.")
|
| 278 |
-
except Exception as e:
|
| 279 |
-
print(f"Error in processing PDF: {e}")
|
| 280 |
-
|
| 281 |
-
def load_documents():
|
| 282 |
-
document_loader = PyPDFDirectoryLoader(DATA_PATH)
|
| 283 |
-
return document_loader.load()
|
| 284 |
-
|
| 285 |
-
def add_to_chroma(chunks: list[Document]):
|
| 286 |
-
try:
|
| 287 |
-
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=get_embedding_function())
|
| 288 |
-
chunks_with_ids = calculate_chunk_ids(chunks)
|
| 289 |
-
existing_items = db.get(include=[])
|
| 290 |
-
existing_ids = set(existing_items["ids"])
|
| 291 |
-
|
| 292 |
-
new_chunks = [chunk for chunk in chunks_with_ids if chunk.metadata["id"] not in existing_ids]
|
| 293 |
-
|
| 294 |
-
if new_chunks:
|
| 295 |
-
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
|
| 296 |
-
db.add_documents(new_chunks, ids=new_chunk_ids)
|
| 297 |
-
db.persist()
|
| 298 |
-
print(f"Chunks added to Chroma.")
|
| 299 |
-
except Exception as e:
|
| 300 |
-
print(f"Error adding chunks to Chroma: {e}")
|
| 301 |
-
def calculate_chunk_ids(chunks):
|
| 302 |
-
last_page_id = None
|
| 303 |
-
current_chunk_index = 0
|
| 304 |
-
|
| 305 |
-
for chunk in chunks:
|
| 306 |
-
source = chunk.metadata.get("source")
|
| 307 |
-
page = chunk.metadata.get("page")
|
| 308 |
-
current_page_id = f"{source}:{page}"
|
| 309 |
-
|
| 310 |
-
if current_page_id == last_page_id:
|
| 311 |
-
current_chunk_index += 1
|
| 312 |
-
else:
|
| 313 |
-
current_chunk_index = 0
|
| 314 |
-
|
| 315 |
-
last_page_id = current_page_id
|
| 316 |
-
chunk_id = f"{current_page_id}:{current_chunk_index}"
|
| 317 |
-
chunk.metadata["id"] = chunk_id
|
| 318 |
-
|
| 319 |
-
return chunks
|
| 320 |
|
| 321 |
|
| 322 |
@app.route('/whatsapp', methods=['POST'])
|
|
@@ -331,78 +81,22 @@ def whatsapp_webhook():
|
|
| 331 |
media_url = request.values.get('MediaUrl0')
|
| 332 |
content_type = request.values.get('MediaContentType0')
|
| 333 |
|
| 334 |
-
if content_type
|
| 335 |
-
# Handle image processing (disease/pest detection)
|
| 336 |
-
filepath = convert_img(media_url, account_sid, auth_token)
|
| 337 |
-
response_text = handle_image(filepath)
|
| 338 |
-
else:
|
| 339 |
# Handle PDF processing
|
| 340 |
-
filepath =
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
elif 'bookkeeping' in incoming_msg:
|
| 346 |
-
response_text = "Please provide the details you'd like to record."
|
| 347 |
-
elif ('rates' in incoming_msg.lower()) or ('price' in incoming_msg.lower()) or (
|
| 348 |
-
'market' in incoming_msg.lower()) or ('rate' in incoming_msg.lower()) or ('prices' in incoming_msg.lower()):
|
| 349 |
-
rates = get_rates()
|
| 350 |
-
response_text = generate_response(incoming_msg + ' data is ' + rates, chat_history)
|
| 351 |
-
elif ('news' in incoming_msg.lower()) or ('information' in incoming_msg.lower()):
|
| 352 |
-
news = get_news()
|
| 353 |
-
response_text = generate_response(incoming_msg + ' data is ' + str(news), chat_history)
|
| 354 |
else:
|
| 355 |
-
|
|
|
|
| 356 |
|
| 357 |
conversation_memory.add_to_memory({"user": incoming_msg, "assistant": response_text})
|
| 358 |
send_message(sender, response_text)
|
| 359 |
return '', 204
|
| 360 |
|
| 361 |
-
def handle_image(filepath):
|
| 362 |
-
try:
|
| 363 |
-
disease = predict_disease(filepath)
|
| 364 |
-
except:
|
| 365 |
-
disease = None
|
| 366 |
-
try:
|
| 367 |
-
pest = predict_pest(filepath)
|
| 368 |
-
except:
|
| 369 |
-
pest = None
|
| 370 |
-
|
| 371 |
-
if disease:
|
| 372 |
-
response_text = f"Detected disease: {disease}"
|
| 373 |
-
disease_info = generate_response(f"Provide brief information about {disease} in plants", chat_history)
|
| 374 |
-
response_text += f"\n\nAdditional information: {disease_info}"
|
| 375 |
-
elif pest:
|
| 376 |
-
response_text = f"Detected pest: {pest}"
|
| 377 |
-
pest_info = generate_response(f"Provide brief information about {pest} in agriculture", chat_history)
|
| 378 |
-
response_text += f"\n\nAdditional information: {pest_info}"
|
| 379 |
-
else:
|
| 380 |
-
response_text = "Please upload another image with good quality."
|
| 381 |
-
|
| 382 |
-
return response_text
|
| 383 |
-
|
| 384 |
-
def process_and_query_pdf(filepath):
|
| 385 |
-
# Assuming the PDF processing and embedding are handled here.
|
| 386 |
-
add_to_chroma(load_documents())
|
| 387 |
-
return query_rag("from pdf") # Replace with a more specific query if needed
|
| 388 |
-
|
| 389 |
|
| 390 |
-
def send_message(to, body):
|
| 391 |
-
try:
|
| 392 |
-
message = client.messages.create(
|
| 393 |
-
from_=from_whatsapp_number,
|
| 394 |
-
body=body,
|
| 395 |
-
to=to
|
| 396 |
-
)
|
| 397 |
-
print(f"Message sent with SID: {message.sid}")
|
| 398 |
-
except Exception as e:
|
| 399 |
-
print(f"Error sending message: {e}")
|
| 400 |
-
|
| 401 |
-
def send_initial_message(to_number):
|
| 402 |
-
send_message(
|
| 403 |
-
f'whatsapp:{to_number}',
|
| 404 |
-
'Welcome to the Agri AI Chatbot! How can I assist you today? You can send an image with "pest" or "disease" to classify it.'
|
| 405 |
-
)
|
| 406 |
if __name__ == "__main__":
|
| 407 |
send_initial_message('919080522395')
|
| 408 |
send_initial_message('916382792828')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
CHROMA_PATH = '/code/chroma_db'
|
| 4 |
+
if not os.path.exists(CHROMA_PATH):
|
| 5 |
+
os.makedirs(CHROMA_PATH)
|
| 6 |
from langchain.vectorstores.chroma import Chroma
|
| 7 |
+
from langchain.document_loaders import PyPDFLoader
|
| 8 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Load and process the PDF
|
| 12 |
+
def save_pdf_and_update_database(pdf_filepath):
|
| 13 |
+
try:
|
| 14 |
+
# Load the PDF
|
| 15 |
+
document_loader = PyPDFLoader(pdf_filepath)
|
| 16 |
+
documents = document_loader.load()
|
| 17 |
+
|
| 18 |
+
# Split the documents into manageable chunks
|
| 19 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 20 |
+
chunk_size=800,
|
| 21 |
+
chunk_overlap=80,
|
| 22 |
+
length_function=len,
|
| 23 |
+
is_separator_regex=False,
|
| 24 |
+
)
|
| 25 |
+
chunks = text_splitter.split_documents(documents)
|
| 26 |
+
|
| 27 |
+
# Initialize Chroma with an embedding function
|
| 28 |
+
embedding_function = HuggingFaceEmbeddings()
|
| 29 |
+
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
| 30 |
+
|
| 31 |
+
# Add chunks to ChromaDB
|
| 32 |
+
db.add_documents(chunks)
|
| 33 |
+
db.persist()
|
| 34 |
+
print("PDF processed and data updated in Chroma.")
|
| 35 |
+
except Exception as e:
|
| 36 |
+
print(f"Error processing PDF: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
AI71_API_KEY = os.environ.get('AI71_API_KEY')
|
| 39 |
|
|
|
|
| 42 |
for chunk in AI71(AI71_API_KEY).chat.completions.create(
|
| 43 |
model="tiiuae/falcon-180b-chat",
|
| 44 |
messages=[
|
| 45 |
+
{"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences."},
|
| 46 |
{"role": "user", "content": f'''Answer the query based on history {chat_history}: {query}'''},
|
| 47 |
],
|
| 48 |
stream=True,
|
|
|
|
| 51 |
response += chunk.choices[0].delta.content
|
| 52 |
return response.replace("###", '').replace('\nUser:', '')
|
| 53 |
|
| 54 |
+
def query_rag(query_text: str, chat_history):
|
| 55 |
+
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=HuggingFaceEmbeddings())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
# Perform a similarity search in ChromaDB
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
results = db.similarity_search_with_score(query_text, k=5)
|
| 59 |
|
| 60 |
if not results:
|
| 61 |
+
return "Sorry, I couldn't find any relevant information."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
|
| 64 |
+
|
| 65 |
+
# Generate the response using the Falcon model
|
| 66 |
+
prompt = f"Context:\n{context_text}\n\nQuestion:\n{query_text}"
|
| 67 |
+
response = generate_response(prompt, chat_history)
|
| 68 |
+
|
| 69 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
|
| 72 |
@app.route('/whatsapp', methods=['POST'])
|
|
|
|
| 81 |
media_url = request.values.get('MediaUrl0')
|
| 82 |
content_type = request.values.get('MediaContentType0')
|
| 83 |
|
| 84 |
+
if content_type == 'application/pdf':
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
# Handle PDF processing
|
| 86 |
+
filepath = download_file(media_url, ".pdf")
|
| 87 |
+
save_pdf_and_update_database(filepath)
|
| 88 |
+
response_text = "PDF has been processed. You can now ask questions related to its content."
|
| 89 |
+
else:
|
| 90 |
+
response_text = "Unsupported file type. Please upload a PDF document."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
else:
|
| 92 |
+
# Handle queries
|
| 93 |
+
response_text = query_rag(incoming_msg, chat_history)
|
| 94 |
|
| 95 |
conversation_memory.add_to_memory({"user": incoming_msg, "assistant": response_text})
|
| 96 |
send_message(sender, response_text)
|
| 97 |
return '', 204
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
if __name__ == "__main__":
|
| 101 |
send_initial_message('919080522395')
|
| 102 |
send_initial_message('916382792828')
|