KOKORO-TTS-1.0 / app.py
NeuralFalcon's picture
Update app.py
49e2f1f verified
raw
history blame
12.1 kB
# Initalize a pipeline
from kokoro import KPipeline
# from IPython.display import display, Audio
# import soundfile as sf
import os
from huggingface_hub import list_repo_files
import uuid
import re
import gradio as gr
# Language mapping dictionary
language_map = {
"American English": "a",
"British English": "b",
"Hindi": "h",
"Spanish": "e",
"French": "f",
"Italian": "i",
"Brazilian Portuguese": "p",
"Japanese": "j",
"Mandarin Chinese": "z"
}
# Print installation instructions if necessary
install_messages = {
"Japanese": "pip install misaki[ja]",
"Mandarin Chinese": "pip install misaki[zh]"
}
def update_pipeline(Language):
""" Updates the pipeline only if the language has changed. """
global pipeline, last_used_language
# Print installation instructions if necessary
if Language in install_messages:
# raise gr.Error(f"To Use {Language} Install: {install_messages[Language]}",duration=10)
gr.Warning(f"To Use {Language} Install: {install_messages[Language]}",duration=10)
# gr.Warning("Reverting to default English pipeline...", duration=5)
# print(f"To use {Language}, install: {install_messages[Language]}")
# print("Reverting to default English pipeline...")
# Revert to default English and return immediately
pipeline = KPipeline(lang_code="a")
last_used_language = "a"
return
# Get language code, default to 'a' if not found
new_lang = language_map.get(Language, "a")
# Only update if the language is different
if new_lang != last_used_language:
try:
pipeline = KPipeline(lang_code=new_lang)
last_used_language = new_lang # Update last used language
print(f"Pipeline updated to {Language} ({new_lang})")
except Exception as e:
print(f"Error initializing KPipeline: {e}\nRetrying with default language...")
pipeline = KPipeline(lang_code="a") # Fallback to English
last_used_language = "a"
def get_voice_names(repo_id):
"""Fetches and returns a list of voice names (without extensions) from the given Hugging Face repository."""
return [os.path.splitext(file.replace("voices/", ""))[0] for file in list_repo_files(repo_id) if file.startswith("voices/")]
def create_audio_dir():
"""Creates the 'kokoro_audio' directory in the root folder if it doesn't exist."""
root_dir = os.getcwd() # Use current working directory instead of __file__
audio_dir = os.path.join(root_dir, "kokoro_audio")
if not os.path.exists(audio_dir):
os.makedirs(audio_dir)
print(f"Created directory: {audio_dir}")
else:
print(f"Directory already exists: {audio_dir}")
return audio_dir
import re
def clean_text(text):
# Define replacement rules
replacements = {
"–": " ", # Replace en-dash with space
"-": " ", # Replace hyphen with space
"**": " ", # Replace double asterisks with space
"*": " ", # Replace single asterisk with space
"#": " ", # Replace hash with space
}
# Apply replacements
for old, new in replacements.items():
text = text.replace(old, new)
# Remove emojis using regex (covering wide range of Unicode characters)
emoji_pattern = re.compile(
r'[\U0001F600-\U0001F64F]|' # Emoticons
r'[\U0001F300-\U0001F5FF]|' # Miscellaneous symbols and pictographs
r'[\U0001F680-\U0001F6FF]|' # Transport and map symbols
r'[\U0001F700-\U0001F77F]|' # Alchemical symbols
r'[\U0001F780-\U0001F7FF]|' # Geometric shapes extended
r'[\U0001F800-\U0001F8FF]|' # Supplemental arrows-C
r'[\U0001F900-\U0001F9FF]|' # Supplemental symbols and pictographs
r'[\U0001FA00-\U0001FA6F]|' # Chess symbols
r'[\U0001FA70-\U0001FAFF]|' # Symbols and pictographs extended-A
r'[\U00002702-\U000027B0]|' # Dingbats
r'[\U0001F1E0-\U0001F1FF]' # Flags (iOS)
r'', flags=re.UNICODE)
text = emoji_pattern.sub(r'', text)
# Remove multiple spaces and extra line breaks
text = re.sub(r'\s+', ' ', text).strip()
return text
def tts_file_name(text):
global temp_folder
# Remove all non-alphabetic characters and convert to lowercase
text = re.sub(r'[^a-zA-Z\s]', '', text) # Retain only alphabets and spaces
text = text.lower().strip() # Convert to lowercase and strip leading/trailing spaces
text = text.replace(" ", "_") # Replace spaces with underscores
# Truncate or handle empty text
truncated_text = text[:20] if len(text) > 20 else text if len(text) > 0 else "empty"
# Generate a random string for uniqueness
random_string = uuid.uuid4().hex[:8].upper()
# Construct the file name
file_name = f"{temp_folder}/{truncated_text}_{random_string}.wav"
return file_name
# import soundfile as sf
import numpy as np
import wave
from pydub import AudioSegment
from pydub.silence import split_on_silence
def remove_silence_function(file_path,minimum_silence=50):
# Extract file name and format from the provided path
output_path = file_path.replace(".wav", "_no_silence.wav")
audio_format = "wav"
# Reading and splitting the audio file into chunks
sound = AudioSegment.from_file(file_path, format=audio_format)
audio_chunks = split_on_silence(sound,
min_silence_len=100,
silence_thresh=-45,
keep_silence=minimum_silence)
# Putting the file back together
combined = AudioSegment.empty()
for chunk in audio_chunks:
combined += chunk
combined.export(output_path, format=audio_format)
return output_path
def generate_and_save_audio(text, Language="American English",voice="af_bella", speed=1,remove_silence=False,keep_silence_up_to=0.05):
text=clean_text(text)
update_pipeline(Language)
generator = pipeline(text, voice=voice, speed=speed, split_pattern=r'\n+')
save_path=tts_file_name(text)
# Open the WAV file for writing
with wave.open(save_path, 'wb') as wav_file:
# Set the WAV file parameters
wav_file.setnchannels(1) # Mono audio
wav_file.setsampwidth(2) # 2 bytes per sample (16-bit audio)
wav_file.setframerate(24000) # Sample rate
# Process each audio chunk
for i, (gs, ps, audio) in enumerate(generator):
# print(f"{i}. {gs}")
# print(f"Phonetic Transcription: {ps}")
# display(Audio(data=audio, rate=24000, autoplay=i==0))
print("\n")
# Convert the Tensor to a NumPy array
audio_np = audio.numpy() # Convert Tensor to NumPy array
audio_int16 = (audio_np * 32767).astype(np.int16) # Scale to 16-bit range
audio_bytes = audio_int16.tobytes() # Convert to bytes
# Write the audio chunk to the WAV file
wav_file.writeframes(audio_bytes)
if remove_silence:
keep_silence = int(keep_silence_up_to * 1000)
new_wave_file=remove_silence_function(save_path,minimum_silence=keep_silence)
return new_wave_file,new_wave_file
return save_path,save_path
def ui():
def toggle_autoplay(autoplay):
return gr.Audio(interactive=False, label='Output Audio', autoplay=autoplay)
# Define examples in the format you mentioned
dummy_examples = [
["Hey, y'all, let’s grab some coffee and catch up!", "American English", "af_bella"],
["I'd like a large coffee, please.", "British English", "bf_isabella"],
["नमस्ते, कैसे हो?", "Hindi", "hf_alpha"],
["Hola, ¿cómo estás?", "Spanish", "ef_dora"],
["Bonjour, comment ça va?", "French", "ff_siwis"],
["Ciao, come stai?", "Italian", "if_sara"],
["Olá, como você está?", "Brazilian Portuguese", "pf_dora"],
["こんにちは、お元気ですか?", "Japanese", "jf_nezumi"],
["你好,你怎么样?", "Mandarin Chinese", "zf_xiaoni"]
]
with gr.Blocks() as demo:
# gr.Markdown("<center><h1 style='font-size: 40px;'>KOKORO TTS</h1></center>") # Larger title with CSS
gr.Markdown("[Install on Your Local System](https://github.com/NeuralFalconYT/kokoro_v1)")
lang_list = ['American English', 'British English', 'Hindi', 'Spanish', 'French', 'Italian', 'Brazilian Portuguese', 'Japanese', 'Mandarin Chinese']
voice_names = get_voice_names("hexgrad/Kokoro-82M")
with gr.Row():
with gr.Column():
text = gr.Textbox(label='Enter Text', lines=3)
with gr.Row():
language_name = gr.Dropdown(lang_list, label="Select Language", value=lang_list[0])
with gr.Row():
voice_name = gr.Dropdown(voice_names, label="Choose VoicePack", value=voice_names[0])
with gr.Row():
generate_btn = gr.Button('Generate', variant='primary')
with gr.Accordion('Audio Settings', open=False):
speed = gr.Slider(minimum=0.25, maximum=2, value=1, step=0.1, label='⚡️Speed', info='Adjust the speaking speed')
remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS')
with gr.Column():
audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
audio_file = gr.File(label='Download Audio')
with gr.Accordion('Enable Autoplay', open=False):
autoplay = gr.Checkbox(value=True, label='Autoplay')
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
text.submit(generate_and_save_audio, inputs=[text, language_name, voice_name, speed, remove_silence], outputs=[audio, audio_file])
generate_btn.click(generate_and_save_audio, inputs=[text, language_name, voice_name, speed, remove_silence], outputs=[audio, audio_file])
# Add examples to the interface
gr.Examples(examples=dummy_examples, inputs=[text, language_name, voice_name])
return demo
def tutorial():
# Markdown explanation for language code
explanation = """
## Language Code Explanation:
Example: `'af_bella'`
- **'a'** stands for **American English**.
- **'f_'** stands for **Female** (If it were 'm_', it would mean Male).
- **'bella'** refers to the specific voice.
The first character in the voice code stands for the language:
- **"a"**: American English
- **"b"**: British English
- **"h"**: Hindi
- **"e"**: Spanish
- **"f"**: French
- **"i"**: Italian
- **"p"**: Brazilian Portuguese
- **"j"**: Japanese
- **"z"**: Mandarin Chinese
The second character stands for gender:
- **"f_"**: Female
- **"m_"**: Male
"""
with gr.Blocks() as demo2:
gr.Markdown("[Install on Your Local System](https://github.com/NeuralFalconYT/kokoro_v1)")
gr.Markdown(explanation) # Display the explanation
return demo2
import click
@click.command()
@click.option("--debug", is_flag=True, default=False, help="Enable debug mode.")
@click.option("--share", is_flag=True, default=False, help="Enable sharing of the interface.")
def main(debug, share):
demo1 = ui()
demo2 = tutorial()
demo = gr.TabbedInterface([demo1, demo2],["Multilingual TTS","VoicePack Explanation"],title="Kokoro TTS",theme='JohnSmith9982/small_and_pretty')
demo.queue().launch(debug=debug, share=share)
#Run on local network
# laptop_ip="192.168.0.30"
# port=8080
# demo.queue().launch(debug=debug, share=share,server_name=laptop_ip,server_port=port)
# Initialize default pipeline
last_used_language = "a"
pipeline = KPipeline(lang_code=last_used_language)
temp_folder = create_audio_dir()
if __name__ == "__main__":
main()