Update app.py
Browse files
app.py
CHANGED
@@ -1,121 +1,3 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# import spaces
|
3 |
-
# from PIL import Image
|
4 |
-
# import torch
|
5 |
-
# from transformers import AutoModelForCausalLM, AutoProcessor
|
6 |
-
# import requests
|
7 |
-
# import json
|
8 |
-
|
9 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
|
11 |
-
# model = AutoModelForCausalLM.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True).to(device)
|
12 |
-
# processor = AutoProcessor.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True)
|
13 |
-
|
14 |
-
|
15 |
-
# SERVER_URL = 'http://43.156.72.113:8188'
|
16 |
-
# FETCH_TASKS_URL = SERVER_URL + '/fetch/'
|
17 |
-
# UPDATE_TASK_STATUS_URL = SERVER_URL + '/update/'
|
18 |
-
|
19 |
-
# def fetch_task(category, fetch_all=False):
|
20 |
-
# params = {'fetch_all': 'true' if fetch_all else 'false'}
|
21 |
-
# response = requests.post(FETCH_TASKS_URL + category, params=params)
|
22 |
-
# if response.status_code == 200:
|
23 |
-
# return response.json()
|
24 |
-
# else:
|
25 |
-
# print(f"Failed to fetch tasks: {response.status_code} - {response.text}")
|
26 |
-
# return None
|
27 |
-
|
28 |
-
# def update_task_status(category, task_id, status, result=None):
|
29 |
-
# data = {'status': status}
|
30 |
-
# if result:
|
31 |
-
# data['result'] = result
|
32 |
-
|
33 |
-
# response = requests.post(UPDATE_TASK_STATUS_URL + category + f'/{task_id}', json=data)
|
34 |
-
# if response.status_code == 200:
|
35 |
-
# print(f"Task {task_id} updated successfully: {json.dumps(response.json(), indent=4)}")
|
36 |
-
# else:
|
37 |
-
# print(f"Failed to update task {task_id}: {response.status_code} - {response.text}")
|
38 |
-
|
39 |
-
|
40 |
-
# @spaces.GPU(duration=200)
|
41 |
-
# def infer(prompt, image, request: gr.Request):
|
42 |
-
|
43 |
-
# if request:
|
44 |
-
# print("请求头字典:", request.headers)
|
45 |
-
# print("IP 地址:", request.client.host)
|
46 |
-
# print("查询参数:", dict(request.query_params))
|
47 |
-
# print("会话哈希:", request.session_hash)
|
48 |
-
|
49 |
-
# max_size = 256
|
50 |
-
# width, height = image.size
|
51 |
-
# if width > height:
|
52 |
-
# new_width = max_size
|
53 |
-
# new_height = int((new_width / width) * height)
|
54 |
-
# else:
|
55 |
-
# new_height = max_size
|
56 |
-
# new_width = int((new_height / height) * width)
|
57 |
-
|
58 |
-
# image = image.resize((new_width, new_height), Image.LANCZOS)
|
59 |
-
|
60 |
-
# inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
61 |
-
|
62 |
-
# generated_ids = model.generate(
|
63 |
-
# input_ids=inputs["input_ids"],
|
64 |
-
# pixel_values=inputs["pixel_values"],
|
65 |
-
# max_new_tokens=1024,
|
66 |
-
# do_sample=False,
|
67 |
-
# num_beams=3
|
68 |
-
# )
|
69 |
-
|
70 |
-
# generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
71 |
-
|
72 |
-
# parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
73 |
-
|
74 |
-
# return parsed_answer
|
75 |
-
|
76 |
-
# css = """
|
77 |
-
# #col-container {
|
78 |
-
# margin: 0 auto;
|
79 |
-
# max-width: 800px;
|
80 |
-
# }
|
81 |
-
# """
|
82 |
-
|
83 |
-
# with gr.Blocks(css=css) as app:
|
84 |
-
# with gr.Column(elem_id="col-container"):
|
85 |
-
# gr.Markdown(f"""# Tag The Image
|
86 |
-
# Get tag based on images using the Florence-2-base-PromptGen-v1.5 model.
|
87 |
-
# """)
|
88 |
-
|
89 |
-
# with gr.Row():
|
90 |
-
# prompt = gr.Text(
|
91 |
-
# label="Prompt",
|
92 |
-
# show_label=False,
|
93 |
-
# max_lines=1,
|
94 |
-
# placeholder="Enter your prompt or blank here.",
|
95 |
-
# container=False,
|
96 |
-
# )
|
97 |
-
# image_input = gr.Image(
|
98 |
-
# label="Image",
|
99 |
-
# type="pil",
|
100 |
-
# show_label=False,
|
101 |
-
# container=False,
|
102 |
-
# )
|
103 |
-
# run_button = gr.Button("Run", scale=0)
|
104 |
-
|
105 |
-
# result = gr.Textbox(label="Generated Text", show_label=False)
|
106 |
-
|
107 |
-
|
108 |
-
# gr.on(
|
109 |
-
# triggers=[run_button.click, prompt.submit],
|
110 |
-
# fn=infer,
|
111 |
-
# inputs=[prompt, image_input],
|
112 |
-
# outputs=[result]
|
113 |
-
# )
|
114 |
-
|
115 |
-
# app.queue()
|
116 |
-
# app.launch(show_error=True)
|
117 |
-
|
118 |
-
|
119 |
import gradio as gr
|
120 |
import spaces
|
121 |
from PIL import Image
|
@@ -123,15 +5,13 @@ import torch
|
|
123 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
124 |
import requests
|
125 |
import json
|
126 |
-
from io import BytesIO
|
127 |
-
|
128 |
|
129 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
130 |
|
131 |
model = AutoModelForCausalLM.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True).to(device)
|
132 |
processor = AutoProcessor.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True)
|
133 |
|
134 |
-
|
135 |
SERVER_URL = 'http://43.156.72.113:8188'
|
136 |
FETCH_TASKS_URL = SERVER_URL + '/fetch/'
|
137 |
UPDATE_TASK_STATUS_URL = SERVER_URL + '/update/'
|
@@ -158,14 +38,8 @@ def update_task_status(category, task_id, status, result=None):
|
|
158 |
|
159 |
|
160 |
@spaces.GPU(duration=150)
|
161 |
-
def infer(
|
162 |
-
|
163 |
-
# print("请求头字典:", request.headers)
|
164 |
-
# print("IP 地址:", request.client.host)
|
165 |
-
# print("查询参数:", dict(request.query_params))
|
166 |
-
# print("会话哈希:", request.session_hash)
|
167 |
-
|
168 |
-
# Fetch tasks
|
169 |
img2text_tasks = fetch_task('img2text', fetch_all=True)
|
170 |
|
171 |
if not img2text_tasks:
|
@@ -212,10 +86,10 @@ def infer(request: gr.Request):
|
|
212 |
except Exception as e:
|
213 |
print(f"Error processing task {task['id']}: {e}")
|
214 |
# If error occurs, update the task status to Failed
|
215 |
-
update_task_status('img2text', task['id'], 'Failed')
|
216 |
return f"Error processing task {task['id']}: {e}"
|
217 |
|
218 |
-
return "No pending tasks found."
|
219 |
|
220 |
|
221 |
css = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
from PIL import Image
|
|
|
5 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
6 |
import requests
|
7 |
import json
|
8 |
+
# from io import BytesIO
|
|
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
model = AutoModelForCausalLM.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True).to(device)
|
13 |
processor = AutoProcessor.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True)
|
14 |
|
|
|
15 |
SERVER_URL = 'http://43.156.72.113:8188'
|
16 |
FETCH_TASKS_URL = SERVER_URL + '/fetch/'
|
17 |
UPDATE_TASK_STATUS_URL = SERVER_URL + '/update/'
|
|
|
38 |
|
39 |
|
40 |
@spaces.GPU(duration=150)
|
41 |
+
def infer():
|
42 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
img2text_tasks = fetch_task('img2text', fetch_all=True)
|
44 |
|
45 |
if not img2text_tasks:
|
|
|
86 |
except Exception as e:
|
87 |
print(f"Error processing task {task['id']}: {e}")
|
88 |
# If error occurs, update the task status to Failed
|
89 |
+
update_task_status('img2text', task['id'], 'Failed', e)
|
90 |
return f"Error processing task {task['id']}: {e}"
|
91 |
|
92 |
+
return "Successed! No pending tasks found."
|
93 |
|
94 |
|
95 |
css = """
|