import gradio as gr from transformers import BlipProcessor, BlipForConditionalGeneration from concurrent.futures import ThreadPoolExecutor import pyttsx3 model_id = "dblasko/blip-dalle3-img2prompt" model = BlipForConditionalGeneration.from_pretrained(model_id) processor = BlipProcessor.from_pretrained(model_id) # Initialize Text-to-Speech engine tts_engine = pyttsx3.init() def generate_caption(image): # Generate caption from image inputs = processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values generated_ids = model.generate(pixel_values=pixel_values, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0] # Convert the generated caption to speech tts_engine.save_to_file(generated_caption, "generated_audio.mp3") tts_engine.runAndWait() return generated_caption, "generated_audio.mp3" # Create a Gradio interface with an image input, a textbox output, a button, and an audio player demo = gr.Interface( fn=generate_caption, inputs=gr.Image(), outputs=[ gr.Textbox(label="Generated caption"), gr.Button("Convert to Audio", None), ], live=True # ทำให้ Gradio ทำงานแบบไม่บล็อก ) demo.launch(share=True)