from transformers import pipeline, BlipForConditionalGeneration, BlipProcessor import torchaudio from torchaudio.transforms import Resample import torch import gradio as gr # Initialize TTS model from Hugging Face tts_model_name = "Kamonwan/blip-image-captioning-new" tts = pipeline(task="text-to-speech", model=tts_model_name) # Initialize Blip model for image captioning model_id = "Kamonwan/blip-image-captioning-new" blip_model = BlipForConditionalGeneration.from_pretrained(model_id) blip_processor = BlipProcessor.from_pretrained(model_id) def generate_caption(image): # Generate caption from image using Blip model inputs = blip_processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50) generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0] # Use TTS model to convert generated caption to audio audio_output = tts(generated_caption) audio_path = "generated_audio_resampled.wav" torchaudio.save(audio_path, torch.tensor(audio_output[0]), audio_output["sampling_rate"]) return generated_caption, audio_path # Create a Gradio interface with an image input, a textbox output, a button, and an audio player demo = gr.Interface( fn=generate_caption, inputs=gr.Image(), outputs=[ gr.Textbox(label="Generated caption"), gr.Button("Convert to Audio"), gr.Audio(type="filepath", label="Generated Audio") ], live=True ) demo.launch(share=True)