import gradio as gr from transformers import BlipProcessor, BlipForConditionalGeneration from gtts import gTTS import IPython.display as ipd model_id = "dblasko/blip-dalle3-img2prompt" model = BlipForConditionalGeneration.from_pretrained(model_id) processor = BlipProcessor.from_pretrained(model_id) def generate_caption(image): inputs = processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values generated_ids = model.generate(pixel_values=pixel_values, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0] # Convert text to speech and save as audio file tts = gTTS(text=generated_caption, lang='en') tts.save("generated_audio.mp3") return generated_caption, "generated_audio.mp3" def play_audio(audio_path): # Display an audio player return ipd.Audio(audio_path) # Create a Gradio interface with an image input, a textbox output, and an audio player demo = gr.Interface(fn=generate_caption, inputs=gr.Image(), outputs=[gr.Textbox(label="Generated caption"), gr.Audio(player=True, label="Play Audio")]) demo.launch()