import gradio as gr from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, pipeline from transformers import AutoTokenizer # Initialize Blip model for image captioning model_id = "dblasko/blip-dalle3-img2prompt" blip_model = BlipForConditionalGeneration.from_pretrained(model_id) blip_processor = BlipProcessor.from_pretrained(model_id) # Initialize TTS model from Hugging Face model_name = "tts-mozilla/tts-ljspeech-multilingual" tts_model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tts_tokenizer = AutoTokenizer.from_pretrained(model_name) tts = pipeline(task="text2speech", model=tts_model, tokenizer=tts_tokenizer) def generate_caption(image): # Generate caption from image using Blip model inputs = blip_processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50) generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0] # Use TTS model to convert generated caption to audio audio_output = tts(generated_caption) audio_output.save_to_path("generated_audio.mp3") return generated_caption, "generated_audio.mp3" # Create a Gradio interface with an image input, a textbox output, a button, and an audio player demo = gr.Interface( fn=generate_caption, inputs=gr.Image(), outputs=[ gr.Textbox(label="Generated caption"), gr.Button("Convert to Audio"), gr.Audio(type="player", label="Generated Audio") ], live=True # ทำให้ Gradio ทำงานแบบไม่บล็อก ) demo.launch(share=True)