from tranformers import VisionEncoderDecoderModle, ViTImageProcer, Autotokenizer import torch from PIL import Image model = VisionEncoderDecoderModle.from_pretrained("nlpconnect/vit-gpt2-image-captioning") feature_external = ViTImageProcer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") tokenizer = Autotokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) max_length = 16 num_beams = 4 gen_kwargs = ("max_length" : max_length, "num_beams" : num_beams) def predict_caption(image_paths): images = [] for image_path in image_paths: image = Image.open(image_path) if image.mode != "RGB": image = image.convert(mode="RGB") images.append(image) pixel_values = feature_extractor(images=images, return_pixel_values=True).pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) return preds