Spaces:
Runtime error
Runtime error
from tranformers import VisionEncoderDecoderModle, ViTImageProcer, Autotokenizer | |
import torch | |
from PIL import Image | |
model = VisionEncoderDecoderModle.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
feature_external = ViTImageProcer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
tokenizer = Autotokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
max_length = 16 | |
num_beams = 4 | |
gen_kwargs = ("max_length" : max_length, "num_beams" : num_beams) | |
def predict_caption(image_paths): | |
images = [] | |
for image_path in image_paths: | |
image = Image.open(image_path) | |
if image.mode != "RGB": | |
image = image.convert(mode="RGB") | |
images.append(image) | |
pixel_values = feature_extractor(images=images, return_pixel_values=True).pixel_values | |
pixel_values = pixel_values.to(device) | |
output_ids = model.generate(pixel_values, **gen_kwargs) | |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
return preds | |