import os import sys sys.path.append(os.getcwd()) import json from concurrent.futures import ProcessPoolExecutor from importlib.resources import files from pathlib import Path from tqdm import tqdm import soundfile as sf from datasets.arrow_writer import ArrowWriter def deal_with_audio_dir(audio_dir): sub_result, durations = [], [] vocab_set = set() audio_lists = list(audio_dir.rglob("*.wav")) for line in audio_lists: text_path = line.with_suffix(".normalized.txt") text = open(text_path, "r").read().strip() duration = sf.info(line).duration if duration < 0.4 or duration > 30: continue sub_result.append({"audio_path": str(line), "text": text, "duration": duration}) durations.append(duration) vocab_set.update(list(text)) return sub_result, durations, vocab_set def main(): result = [] duration_list = [] text_vocab_set = set() # process raw data executor = ProcessPoolExecutor(max_workers=max_workers) futures = [] for subset in tqdm(SUB_SET): dataset_path = Path(os.path.join(dataset_dir, subset)) [ futures.append(executor.submit(deal_with_audio_dir, audio_dir)) for audio_dir in dataset_path.iterdir() if audio_dir.is_dir() ] for future in tqdm(futures, total=len(futures)): sub_result, durations, vocab_set = future.result() result.extend(sub_result) duration_list.extend(durations) text_vocab_set.update(vocab_set) executor.shutdown() # save preprocessed dataset to disk if not os.path.exists(f"{save_dir}"): os.makedirs(f"{save_dir}") print(f"\nSaving to {save_dir} ...") with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer: for line in tqdm(result, desc="Writing to raw.arrow ..."): writer.write(line) # dup a json separately saving duration in case for DynamicBatchSampler ease with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f: json.dump({"duration": duration_list}, f, ensure_ascii=False) # vocab map, i.e. tokenizer with open(f"{save_dir}/vocab.txt", "w") as f: for vocab in sorted(text_vocab_set): f.write(vocab + "\n") print(f"\nFor {dataset_name}, sample count: {len(result)}") print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}") print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours") if __name__ == "__main__": max_workers = 36 tokenizer = "char" # "pinyin" | "char" SUB_SET = ["train-clean-100", "train-clean-360", "train-other-500"] dataset_dir = "/LibriTTS" dataset_name = f"LibriTTS_{'_'.join(SUB_SET)}_{tokenizer}".replace("train-clean-", "").replace("train-other-", "") save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}" print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n") main() # For LibriTTS_100_360_500_char, sample count: 354218 # For LibriTTS_100_360_500_char, vocab size is: 78 # For LibriTTS_100_360_500_char, total 554.09 hours