Spaces:
Running
Running
Delete train.py
Browse files
train.py
DELETED
@@ -1,92 +0,0 @@
|
|
1 |
-
from model import CFM, UNetT, DiT, Trainer
|
2 |
-
from model.utils import get_tokenizer
|
3 |
-
from model.dataset import load_dataset
|
4 |
-
|
5 |
-
|
6 |
-
# -------------------------- Dataset Settings --------------------------- #
|
7 |
-
|
8 |
-
target_sample_rate = 24000
|
9 |
-
n_mel_channels = 100
|
10 |
-
hop_length = 256
|
11 |
-
|
12 |
-
tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
|
13 |
-
tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
14 |
-
dataset_name = "Emilia_ZH_EN"
|
15 |
-
|
16 |
-
# -------------------------- Training Settings -------------------------- #
|
17 |
-
|
18 |
-
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
|
19 |
-
|
20 |
-
learning_rate = 7.5e-5
|
21 |
-
|
22 |
-
batch_size_per_gpu = 38400 # 8 GPUs, 8 * 38400 = 307200
|
23 |
-
batch_size_type = "frame" # "frame" or "sample"
|
24 |
-
max_samples = 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
25 |
-
grad_accumulation_steps = 1 # note: updates = steps / grad_accumulation_steps
|
26 |
-
max_grad_norm = 1.0
|
27 |
-
|
28 |
-
epochs = 11 # use linear decay, thus epochs control the slope
|
29 |
-
num_warmup_updates = 20000 # warmup steps
|
30 |
-
save_per_updates = 50000 # save checkpoint per steps
|
31 |
-
last_per_steps = 5000 # save last checkpoint per steps
|
32 |
-
|
33 |
-
# model params
|
34 |
-
if exp_name == "F5TTS_Base":
|
35 |
-
wandb_resume_id = None
|
36 |
-
model_cls = DiT
|
37 |
-
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
38 |
-
elif exp_name == "E2TTS_Base":
|
39 |
-
wandb_resume_id = None
|
40 |
-
model_cls = UNetT
|
41 |
-
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
42 |
-
|
43 |
-
|
44 |
-
# ----------------------------------------------------------------------- #
|
45 |
-
|
46 |
-
|
47 |
-
def main():
|
48 |
-
if tokenizer == "custom":
|
49 |
-
tokenizer_path = tokenizer_path
|
50 |
-
else:
|
51 |
-
tokenizer_path = dataset_name
|
52 |
-
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
53 |
-
|
54 |
-
mel_spec_kwargs = dict(
|
55 |
-
target_sample_rate=target_sample_rate,
|
56 |
-
n_mel_channels=n_mel_channels,
|
57 |
-
hop_length=hop_length,
|
58 |
-
)
|
59 |
-
|
60 |
-
model = CFM(
|
61 |
-
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
62 |
-
mel_spec_kwargs=mel_spec_kwargs,
|
63 |
-
vocab_char_map=vocab_char_map,
|
64 |
-
)
|
65 |
-
|
66 |
-
trainer = Trainer(
|
67 |
-
model,
|
68 |
-
epochs,
|
69 |
-
learning_rate,
|
70 |
-
num_warmup_updates=num_warmup_updates,
|
71 |
-
save_per_updates=save_per_updates,
|
72 |
-
checkpoint_path=f"ckpts/{exp_name}",
|
73 |
-
batch_size=batch_size_per_gpu,
|
74 |
-
batch_size_type=batch_size_type,
|
75 |
-
max_samples=max_samples,
|
76 |
-
grad_accumulation_steps=grad_accumulation_steps,
|
77 |
-
max_grad_norm=max_grad_norm,
|
78 |
-
wandb_project="CFM-TTS",
|
79 |
-
wandb_run_name=exp_name,
|
80 |
-
wandb_resume_id=wandb_resume_id,
|
81 |
-
last_per_steps=last_per_steps,
|
82 |
-
)
|
83 |
-
|
84 |
-
train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
85 |
-
trainer.train(
|
86 |
-
train_dataset,
|
87 |
-
resumable_with_seed=666, # seed for shuffling dataset
|
88 |
-
)
|
89 |
-
|
90 |
-
|
91 |
-
if __name__ == "__main__":
|
92 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|