Text_analyzer / app.py
NeerAbhy's picture
Update app.py
a8c9cb0 verified
raw
history blame
786 Bytes
import gradio as gr
from transformers import pipeline
transcription = pipeline("automatic-speech-recognition", model= "openai/whisper-base")
clasification = pipeline(
"audio-classification",
model="anton-l/xtreme_s_xlsr_300m_minds14",
)
def audio_a_text(audio):
text = transcription(audio)["text"]
return text
def text_to_sentimient(audio):
#text = transcription(audio)["text"]
return clasification(audio)
demo = gr.Blocks()
with demo:
gr.Markdown("Speech analyzer")
audio = gr.Audio(type="filepath", label = "Upload a file")
text = gr.Textbox()
b1 = gr.Button("convert to text")
b1.click(audio_a_text, inputs=audio, outputs=text)
b2 = gr.Button("Classification of speech")
b2.click(text_to_sentimient, inputs=audio, outputs=text)
demo.launch()